
* mflC FILE. OOR

SA/TR-2/89

A003: FINAL REPORT

COMPUTER ALGORITHMS AND ARCHITECTURES
FOR THREE-DIMENSIONAL

EDDY-CURRENT NONDESTRUCTIVE EVALUATION

CD
Contract No. N 00019-86-C-0219

Nwith

ISabbagh Associates, Inc.

4639 Morningside Drive
Bloomington, IN 47401

for

Naval Air Systems Command

20 January, 1989 DTIC
Volume 8 ELECTE

CHAPTERS VI-XI -4 APR 1996

IA

I'~ ~m Wans

8f) 4 0 4 08SZ



UNCLASSIFIED

REPORT DOCUMENTATION PAGE
*'a 11EPOR" SCicullt 1b.~.IO RESTICTIVE MARKINGS

ZaII 'rLT C. SS&.iCA74% A~j7POruTY 3 Of$ A-SJTION1sA,0A.LAt1:LhrY Of RtE40RT

20 OEC..ASSa'4&_IONdOOWNGAAONG $C,4EOULE Approved for Public Release;
________________________________________________ Distribution is unlimited.

4PERJORMiNG O9GA?4iZArION REPORT NUM.4ER(S) 5 MQNdrOR.NG ORGANiZArON RMPR7 NBj'ERS)

SA/TR-2/89
* E. NIAME OF PERFORMiNG ORGA.reZAT)Oh 60 OFFICE SYMBOL 7a. NAME OF MONiFORiNG ORGANIZATION

SABAGHASSCITES IN. f apiwicabl.io Department of The Navy
SABBGH ASOCITESINC.Naval Air Systems Command

6c. ADDRESS (Cry. State. and ZIP Code) 7b. ADDRESS (Cry, Start. and ZIP Coot)J
4639 Morningside Drive ATTN: AIR-931A

.,. Bloomington, IN 47401 Washington, DC 20361-9310

Sa. NAME OP FuNOiNGiSPONSORING jso OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION OfU ap9IicJiieI

Naval Air Systems Command jN00019 NOOl 9-86-C-0219
k. A03RESS(City, Stat..and ZIP Code) ~0SOURCE OF gwyofNG NUMBERS

AIR-931A PROGRAM IPROJECT TASK~ WORKc UNIT
Washington, DC 20361-9310 ELEMENT NO. NO. NO. ACCESSION NO

Ii I~E If~iu. ~cre Ojzi~crinj COMPUTER ALG~ORITHMS AND ARCHITECTURES FOR THREE-DIMENSIONAL
1* ED %Y-CURREJJINON ESTRUCTIVJ EVALUATION.

toi ume I - Ufa tr -XI')
2PERSONA. AUTmOR(S) SBAHASCAE

13a. TYVPE OF REPORT 13b. TIME COVERED 114 DATE OF REPORT (Year.on.Oy PAGE COUNT
Final FROM] _L L TOWlz=891 1/20/89 180

16 SUPPLEMENTARY NOTATION

17COSATt CODES IS. SUBJECT TERMS (Continue on reverm of niecesary and identify by block nutoorJ

PLO GROUP SUB-GROUP ddy-current nondestructive eval1uati on, Three-dimensional
14 02 image reconstruction, inverse prdblems, conjugate gradient
111 04 1 lorithm, computer architecture and DSP integrated circuits

19 ABSTRACT (Continue on teverS, if nectsay and identify by Block numrrberl

SEE NEXT PAGE

20 0-S70 Bi.'O'AVAIA&IiUY OF AOSR;ACT 2' ABSTRACT SiC,RIT'r C..AS SICA T)ON
~NLS~NMrD C] SAME AS RPT C Dr;C UISEPS UNCLASSIFIED

':a NAME O 4S--NS.8LE 1N:)'v1'OAL 22 (EE"0EIJo* Arlea Cocie !Z Oi"CE "E0.

Dr. L. E. slot er 12)69-45AIR-931A
00 FORM 147 3, 54 AR 83AR%~.V a *.1O ~'.O~h.tO ~.AS.'CAr'N OF ; .C-

All ot.w toat Qfim are 00so~ee



* 4.

.1
L..

18. Digital signal processing, image processing, classification

1~

- 4 t
*1

.L.



I

I!

19. ABSTRACT

L this reportiwi develop an electromagnetic model for three-dimensional inversion of eddy-
current data, an inversion algorithm based on the conjugate gradient technique, and a specialIpurpose computer that we estimate can execute this algorithm in times comparable to high
speed main-frames. This computer has a pipeline architecture and is designed around our parallel
implementation of the inversion algorithm and makes use of high-speed DSP chips. The inversion
process achieves a higher performance measure when more than one data set is inverted. The
sequential order of the inversion scheme restricts the number of active elements in the pipe for
a single problem. When more than one inversion problem enters the pipe, then more than oneR element could be active to improve the overall performance of the system.

The basic electromagnetic model starts with the integral equations for electromagnetic scat-
tering, which are then discretized by means of the method of moments. This gives us the funda-
mental inversion model, which is then solved using the conjugate gradict algorithm. In order to
accomplish the three-dimensional inversion, we acquire data at a number of frequencies; there-
fore, our inversion process is called a multifrequency method.-The choice of frequencies, and thenumber of frequencies to be used, depend upon the conductivity of the host material, and the
depth resolution sought. _--

The method of conjugate gradients has a number of attractive features for our purposes. Chief
among them is that it allows a large problem to be solved efficiently, and, because it is an iterative
algorithm, it. allows us to take advantage of the special Toeplitz structure of the discretized model.
We also derive an algorithm that allows us to constrain the solution, use preconditioning and a
Levenberg-Marquardt parameter. Preconditioning is often useful in improving the convergence of
the conjugate gradient algorithm, and the Levenberg-Marquardt parameter is needed to stabilize
the solution against the effects of noise and modeling inaccuracies.

The inversion algorithms may require a prioryi information about the flaw regions. The infor-Imation can be used to concentrate the inversion efforts on regions of interest rather than unflawed
regions. Statistical pattern recognition and computer vision techniques have been examined to
achieve this goal. The purpose of applying statistical pattern recognition techniques, is to detect
the flaw regions and the background regions in the spatial domain. In addition, a graphical tool
can be used to analyze the raw data when used as input features, and evaluate the classifiability
of the measurement (any two features). Accession For
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CLASSIFICATION OF
EDDY CURRENT MEASUREMENTS FOR
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I 1. Overview and Introduction
The inversion algorithms may require apriori information about the flaw regions. The

information can be used to concentrate the inversion efforts on regions of interest rather than
unflawed regions. Statistical pattern recognition and computer vision techniques have been
examined towards this goal. In this chapter, we shall present the pattern recognition approach,1 while the second approach is presented in chapter IX.

Our goal of applying statistical pattern recognition techniques, is to detect the flaw regions
and the background regions in the spatial domain. The regions identified as flaws, are the pro-
jection of the three-dimensional flaw unto the measurement plane. These planar regions
correspond to the three-dimensional flaw only in the measurement plane and do not indicate the
depth of the flaw. The three-dimensional conductivity profile is obtained by inversion of the
measurements.

The decision will be based on a feature for each sample point. If the features show
sufficient separability then the detection scheme would have low detection errors. Two class
detection will be denoted by binary detection to indicate that only two classes are considered.
The features used in this chapter are listed in chapter IX. Figure 1 below shows the block
diagram of the classification process when the classifier parameters have been estimated. The
estimate is derived from a training set extracted by the segmentation as discussed in chapter IX.

I
Flaw3 F aBackgroundIMeasurement Preprocessing Classifier Bcgon

5Figure 1: Block diagram of the flaw detection system for eddy current inversion.

We applied a multi-class classifier to the eddy current data when the number of classes is
two. The multi-class can then be used (we have not pursued this idea) to detect and classify
flaws among flaw classes. We believe that the feature set extracted from a flaw region, would
contain sufficient information to identify flaws from one another. Such a system, in principle at
least, would isolate the flaw regions into separate regions where each region would be associated
with one type of flaw. The multi-class scheme was also motivated by the need to isolate the
tows 1 present in the eddy current scan of some material. The tows were introduced as a third
class in addition to flaws and background.

A graphical tool developed in this chapter to analyze the raw data when used as input
features, and evaluate the classifiability of the measurement (any two features). The two-
dimensional scatter diagram of any two features could also be obtained. Further more, each
cluster of the data is represented by an ellipse reflecting the cluster relative size and orientation.

Graph theory is used to obtain the class boundaries in the two-dimensional case by eliminating
segments that do not belong to the classification boundary.

3 I Appendix E, page 20 of the FIFTH QUARTERLY REPORT for this contract.

I
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2. Multi-Class Piece-wise Linear Classifiers
With the introduction of tows in some measurements, a more elaborate scheme is required

to detect the tows as well. In the identification problem (identifying regions corresponding to
various flaws), the number of classes depends on the number of flaw types considered. For
example, if the classifier is to identify two different kinds of flaws, then the number of classes is

I three: One for the background and two for the flaws.
When the multi-class problem is considered, the linear classification problem reduces to

finding intersections of hyperplanes in the feature space. The dimension of the feature space will
be reduced to two for part of this report to illustrate and test the algorithms developed. In later
sections this constraint will be dropped and the full feature set in current use will be utilized.
Further more, when only two features are used (real and imaginary part), the complexity of the
classifier is decreased.

A linear classifier for two classes has the form:

h(x)=V= x+V , (1)

I where V is the weight vector, V is the threshold, x is the feature vector and h is the decision
function. The parameters of the linear classifier are determined during training by minimizing
the error-probability. The sixth quarterly report showed some results for the two class case using
a linear classifier. By increasing the number of classes, the classification or detection scheme
can reveal more about the characteristics of the measured data. As the number of classes
increases, the actual decision boundary is determined by the intersection of pair-wise hyper-
planes in the feature space. The design will be followed closely to the piece-wise linear
classifiers presented in [Fl], and is derived by considering two classes at time.

Assume there are M classes [Fl], then there are (M)(M - 1)/2 discriminant functions,
corresponding to each class pair. To each pair ij there is a linear separating boundary of the

I form:

I hij(x)=VT x+ V ~j i E l, 2,...,M). (2)

The signs of Vii are selected such that the i-th class distribution is on the positive side of hij and
the j-th class distribution lies on the negative side. A sample (or a measurement) x belongs to
the i-th class if ( hij(x) > 0: i, j = 1, 2, 3, ... M; i * j). The i-th class identification with the
positive region in the feature space holds for connected regions and each class is represented by
one cluster thus eliminating the situation where different clusters are of the same class.

The number of classes desired for classification is determined primarily by the number of
distinct regions of interest. The decision function between the ij-th pair is denoted by hij with
the implicit understanding the i * j. The weight or coefficient vector is denoted by Vj and the
thresohld is Vij.. The statistical characteristics of the data are obtained from the conditional
means Tli, ij, and covariance matrices 1i and Ej. The a priori probabilities are given by P (oh)
and P (wj) and an estimate of these probabilities can be obtained from the segmentation results.
The error probability in terms of the error function is denoted by Eij, while the actual miss-

I
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I classification count during training is denoted by e5,. The expression for the error probability
was derived in the sixth report for two classes and is stated in the multi-class formulation. The
following is the complete formulation of multi-class linear classifier followed by an explanation
of the steps involved:

Multi-Class Piece-Wise Linear Classifiers

SForeach i = 1, 2, 3, 4,. M
2=VT y V,

For eachj=i+ 1, i+2, M
Fors +- s+ 8s;(05s5l)

Vi= (s1i + (1 - s) Y) 1 (Mj -Mi),

J=VT~.

s io~ ~ (-sa /MST i+ (I - s) VM

hVi(x = x Y + S

S {= incorrectly classified
eJ(x) correctly classified

I ei5 = Y eij(x)

li -- VT M i + Vijo'
1j= VT MVjO I

EM 1IM ii
The procedure outlined above yields the decision boundary between each pair with

minimum error probability. The minimum error probability criterion used in this report is based
on the error function and was derived for the two class case in the previous report. The actual
miss-classification normalized count, is more accurate for a particular training set but may not
yield the optimum value when considering samples for classification, since this fine tuning step
may bias the classifier heavily towards a given training set.

Starting with the initial step, the variance of the i-th class is obtained as i varies from the
first to the last class. The next step is to determine the resolution of the classifier parameter s. In
this report, the resolution was set to 8s = 1/128 meaning that the algorithm will find the linear
classifier that gives the smallest error among 128 classifiers for each class pair. Note the weight
vector V depends on the mean vector separation and the algorithm should be modified should

aVI-4
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I any two classes have equal or very close means. Two classes of one of the simulated data set
had close mean vector, and as will be illustrated the error was higher than other class pair. The
decision hyperplane between the two pairs is obtained and then the data is classified by knowing
a priori the class to which the sample belong. This training would give us an actual error graph
that could be compared to the theoretical error when the classes are assumed to be Gaussian. In
a later section, results of the classification and error plots will be shown.

In this chapter, two synthesized data sets and actual data will be considered for evaluation
and testing. Each class pair yield a decision boundary, and for a given class, the actual decision£ boundary is formed of combining other pair-wise hyperplanes. The test data set include a set
with minimal class overlap, a set with similar properties for small separability, and actual data
taken in the laboratory. The statistical properties of the sets used are shown in Table 1. The fol-
lowing section discusses the graphical representation when the feature space is restricted to two.
It should be mentioned that this restriction has to be evaluated for real data followed by mapping3higher dimensional feature space unto the two-dimensional feature space.

2.1. Two-Dimensional Graphical Representation
The graphical representation of the classes will be examined here to test the software and

provide some examples for the detection process. The two-dimensional restriction will provide
an evaluation of flaw detection with only two features specifically the measurement data.

I There are a number of pair-wise linear segments forming the boundary region for a particu-
lar class resulting from the multi-class algorithm presented in section 2.0. For example, Figure 2

i shows the cluster diagram of a two-dimensional, four class problem. The mean vectors and
covariance matrices have been chosen to separate nicely for illustrative purposes with statistical
properties shown in Table 1. The decision boundary is actually derived from the estimates of the
statistical properties for the simulated and actual data.

Table 1: The characteristics of simulated data for program development

I Statistical Properties of Simulated Data

_ _ _Data set anti

Class I Class 2 Class 3 Class 4

M, M ___"- M 2  L M 3  TA M 4  ___4

4.0 0.7 0.0 0.0 0.7 0.0 -4.0 0.4 0.0 0.0 0.4 0.0
0.0 0.0 0.4 4.0 0.0 0.4 0.0 0.0 0.7 -4.0 0.0 0.7

I _Data set two

Class 1 Class 2 Class 3 Class 4
IMi 11! M2 E2 M3 L3 M4 Z-4

7.82 1.03 1.28 5.76 4.79 4.41 6.61 1.63 2.15 6.12 5.11 4.73

6.75 1.28 1.96 5.71 4.41 5.07 5.06 2.15 3.59 6.28 4.73 5.68

I
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I Each class in the cluster diagram of Figure 2 will be replaced by an ellipse characterizing
the class as illustrated in Figure 3 on the following pages. The parameters of the ellipse are

I determined from the eigenvalues and eigenvectors of the whitening transformation discussed in
the previous report as well as in the next section. The boundary of any ellipse in Figure 3, show
the orientation and the relative variance size of a Gaussian distribution with identical mean andIcovariance matrix as the estimated. Some of the samples would lie outside the ellipse boundary,
hence the boundary is a probabilistic characterization of the particular class. In later sections,
the probability that a given sample may lie within the boundary will be derived.

9.0 8.oo 8AO -anti

6.00

4.00

2.00 - A 03

-. 00 ,& 
YII

-4.00 y Y! +A
-8.00

-8 .oo -6.00 -,:0o -2:00 o.;o 21.o .;0o 6.0o 8 .00

Figure 2: Scatter diagram of the simulated data for the parameters listed in Table 1.

The straight lines shown .in Figure 4 are the corresponding pair-wise linear classifiers
obtained by considering two classes at a time. Each straigh line is labeled by the actual pair it
divides. For example: h 12 is the classifier that divides classes one and two, h 23 is the classifier
that divides classes two and three, and hij is the classifier that divides the i-th and j-th class. A
feature vector x is assigned to the i -th class if:

3 hij(x) > 0 j * i. (3)

I
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I Note that not all the line segments shown in Figure 4 belong to the decision boundary,
because the decision boundary is composed of the intersection of pair-wise regions. In order to
track and represent the boundary graphically, the following algorithm is presented. It follows
the idea of boundary tracking in digital images as discussed in earlier reports under component
labeling. 8.oo ant

1 6.00

I 4.00 0

1 2.00

3 0.00 0
-2.00

3 -4.00

3-6.00

-8.00
-8.00 -6.00 - 00 -2 00 0.00 2.0 .. o00 6.0 8.0

Figure 3: The characteristic ellipses of the simulated clusters shown in Figure 2.
The center of the ellipse correspond to the estimated mean of data set. The major
and minor axis denote the principal orientation of each cluster.

2.2. Graphical Representation of Classes
I In this section, a scheme to represent each class by an ellipse is presented. The elliptical

representation is quiet arbitrary and is preffered because the principal components of the classes
can be alligned with the major and minor axis of the ellipse. Furthermore, the equal probability
curves of a Gaussian density are ellipses whose parameters are closely related to the covariance
matrix. For the Gaussian case, it is sufficient to know the mean vector and the covariance matrix
to determine the ellipse that represents the distribution.

I
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I ant i
8.00

6.00 -9

4.00

£ 2.00

10.00 H24

1 -2.00

3 -4.00

1 -6.00

-8.00 ,"
-8.00 -6.00 -4.00 -2.00 0.00 2.00 I4.00 6.00 8.00

3 Figure 4: The decision boundaries for each class pair of the simulated data. Each
line is labeled by the class pair it separates. Not all the line segments belong to the

I decision boundary.

Since the ellipse forms a region in the feature space, integrating the density function over
this region yields the probability that a given sample falls in the region. Thus, for a given proba-
bility, an ellipse can be chosen to represent the classes. However, the density function is not
known a priori which will make it difficult to obtain the probability since an estimate of the den-
sity may be required. In ,his case (unknown density), an estimate of the probability can be
obtained by counting the number of samples inside the ellipse (or region) and dividing by the
total number of samples in the class. As the parameters of the ellipse vary, an estimate of the
probability as a function of the ellipse parameters is obtained. The ellipse is chosen based on a
given probability level. For example, in the familiar one-dimensional Gaussian case, if a level
of 68% is chosen, then the interval (width of the ellipse) would be one standard deviation on
each side of the mean, and for a 95% level, the width of the interval would be two standard devi-
ation on each side of the mean.

The initial step in this representation is to find the principal components of the class under
consideration. The center of the class is the estimated mean , thus by shifting the coordinate

I The estimated men is used in all the classification experiments performed in this report. This includes the
simulated and the actual data.

I VI-8



I
system in the feature space, the class would have zero mean. Next, the principal components of
the distribution are determined. These components are determined via an Orihonormal transfor-
mation as done below for the Gaussian case [F1].

Suppose the feature vector is drawn from a jointly Gaussian distribution with density (after
subtracting the mean) given by:

(X) = (2c)- n 2 IV 1 1 2 exp(-12X r- X), (4)

where X is a two-dimensional feature vector and I is the class covariance matrix. The term
defined for the exponential in the density of equation (4) is a distance metric. It measures the
distance from the mean (origin here) to any point X in the feature space weighted by the covari-
ance matrix. The principal components of the distribution are determined by finding the vector
X which maximize (or minimize) the weighted distance metric with constant magnitude. That is,
find the vector X which maximizes XT  -1 X subject to XTX = c, where c is a constant.
Proceeding with defining the Lagrangian multiplier gt, the cost function becomes:

f (X, g) =XT Z- 1 X - g (XTX - c), (5)

I and upon taking derivatives the following necessary conditions are obtained:

3 Y7-X-ItX =0. (6)

By defining X rc 1 t, the necessary condition is equivalent to I X = X X which for non-singular
covariance matrix reduces to solving the characteristic equation:

I T - X Il=0. (7)

The covariance matrix Z is real, symmetric and non-singular which implies that its eigenvalues
are real. To each eigenvalue X1, X2 , . .. , an eigenvector 01, 02, .. .,0n is determined by
solving X Oi = Xi 0j. The set of eigenvectors are orthogonal which is shown below.3 Let and Xj be any two eigenvalues such that i j with the corresponding eigenvectors 4i
and Oj satisfying the following conditions:

I O Xi Oi, (8)

T_ 0=i k j. (9)

By multiplying equation (8) by 0j, equation (9) by Oi and subtracting the resulting equations to3 give the following:

I
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X=O -OT 10j. (10)

The right hand side of equation (10) is zero since Z is a symmetric matrix. For distinct
eigenvalues (Xi * X), the left hand side becomes , , =j0. Hence the eigenvectors are orthog-
onal and form the principal components of the class distribution.

The norm of each eigenvector is given by OT i €. Using the constraint equation, XT X, when
X is an eigenvector gives a norm of the constant c. By choosing the constant c to be a unity the
eigenvectors form and orthonormal set. That is .T 0j = 8&, where 8 ij is the Kronecker delta
function. Since the eigenvectors now define an orthonormal set, a new matrix 4) whose columns
are the eigenvectors can define a linear transformation. That is,

4)= [01, 02 .... 1n .(1

Equation (10) can then be written in terms of 0 with

T Z4=XA, (12)

where A is an n x n diagonal matrix given below:

.X, 0'

A= 0 (13)

The ortho-normality relation OT 0j = 80 can be expressed in terms of the eigenvector matrix 4)
as shown below:

qrT¢..=I,(14)

where I is the identity matrix. Note that this equation indicates that the inverse of 4) is its tran-
spose (i.e. V1 - 4 ) . Thus equation (12) above can be written as:

e 4) =A. (15)

The eigenvector matrix, 0, defines a linear, non-singular, ortho-normal transformation.
This transformation would map the original distribution into the center and could be used to whi-
ten the distribution. It will be used here to derive a characterization of the cluster relative to

IVI-10
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I each other as done next.
Let Y = eot X be a new random vector derived from the original distribution X by applying3 the linear transformation just found. The mean of Y is zero as shown below:

Mv = E [Y] = E [T X ] = T E [X] = 0, (16)

since the distribution of X has been shifted by its mean. The covariance matrix Ty is:

X = E [(Y -My) (Y - My)T ] = E [ XXT (D] = e 1; ID. (17)

I By using equation (15) the covariance matrix of Y is the eigenvalue matrix, i.e.,

3 q) 1;(D=A. (18)

The linear transformation defined by 0 transforms the original Gaussian distribution into a
Gaussian distribution with a diagonal matrix whose elements are the eigenvalues of the original
distribution. Since the covariance matrix of Y is diagonal, then the components of Y are uncorre-
lated random variables (for Gaussian case, they are also independent). Further more, the
transformation could be used to diagonalize a given distribution and for our purposes in the
graphical representation of the classes it allows to locate the pirincipal axis of a given class.3The eigenvectors of the linear transformation just derived, are orthogonal and could be used
as a new coordinate system. In this coordinate system, the distribution of a Gaussian distribution
is also Gaussian and is given by:

f(Y)=(2n)-1 2 IA 1- 1/ 2 exp(- 1 Yr A-1 Y), (19)£ 2

and for a given region in the feature space, the probability that a given sample falls in the region
is just the integral of the probability density function over the region. In the following para-
graphs, the dimension of the feature space is set to two in order to find explicit formulas for the
graphical representation of the classes.

The ellipse parameters (major, minor axis and orientation) are chosen from the diagonal
eigenvalue value matrix. The ellipse representing the classes will be called the characteristic
ellipse and the major and minor axis are the variances in each eigenvector direction as illustrated
in Figure 5 below.

The orientation of the ellipse are obtained from the principal directions 01 and 02. It is
also desired to evaluate the probability that a given sample would fall in the characteristic
ellipse. If y 1 and Y2 are the coordinates in the transformed domain, the density of the class is
then:

I
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Ition.
2 2

1 Y1Y) I xf lYi + Y (20)

I

2n 1 'I-T 2 X, X2

with the characteristic ellipse defined by:

I I y +< (21)
xi 2

3 The probability that a given class sample falls in the characteristic ellipse is then:

'2 /X2(1P (Y.R X , (I 2 , 2 /

J I f (Y 1, Y2 ) dY2 dY1 , (22)

where R is the region defined by Equation (21) and Y = (Y, Y2). The probability P is then a
function of the eigenvalues, i.e., for given eigenvalues, the integral can be evaluated numeri-
cally, or could be approximated by counting the number of samples inside the characteristic
ellipse divided by the total number of class samples. Figure 7 shows the cumulative probability
over the elliptical regions as a function of the ellipse major and minor parameter. The lines of
constant probability are shown in Figure 8. These lines, show that for a sample to fall within
99% of the characteristic ellipse, the major and minor axis should be enlarged to be around 10
times as their current value which is one standard deviation. The probability that a sample falls
in this region is about 48% for the current setting (one standard deviation).

1I
I
3 Vl- 12



3 Cumulative Probabilitt
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30.00000 -3 P

3 Figure 6: The Cumulative Probability function as a function of the elgenvalues.
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3 Figure 7: Level curves of the Cumulative Probability function.

2.3. Tracking Piece-Wise Linear Decision Boundaries
A generalized algorithm for tracking linear boundary will be devised here. The problem

will be formulated independent of the previous section and applied to the classification problem.
Assume the planar region of interest is rectangular and bounded by xm x - Xm. and

Ymi !Y gYmax denoted by R. Each line i(x,y), which separates two classes, intersects the
region R in more than two points because the region R is bounded by the extremes of the data.
This is not a severe assumption since the data is scanned a priori to determine the bounds of the
region R. Every line now divides the region R into two regions corresponding to the sign of
l(x,y) denoted by R' and R-. Let R+ = ((x,y): i(x,y) > 0 ) and R- = ((x,y): I(x,y) < 0 ). A
constraint set is a list of inequalities defining a subset of the region R. The constraint list can
describe the boundary of a given class. For example, Figure 9 shows a region R and three line

I
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I
5 segments intersecting R. The three lines intersect the region in more than two points and may

intersect each other. The intersection of these lines define small regions in terms of a constraint
lists.

UVI V2  V3 V4I
I v

I

V7  Vs V 9I

,I

Figure 8: An example of vertex and region assigment for three class problem.

Each intersection point has been labeled including those of the boundary of the region R. For
example, R+ and R- define the subset bounded by the line segments (vg, v9 ), (vg, vil) and
(v 1 , vS). The boundary problem can be formulated as:

3 Given straight lines l1, 12, . •., I. intersecting a rectangular, planar, and bounded re-
gion R. Each line intersects the region R in more than two points thus dividing R into
regions. For a given constraint set, locate the line segments that define the boundary a
class specified by a constraint list.

The problem of tracking the decision boundary can be formulated in terms of graph theory.
Most of the definitions and results are well known in graph theory and are included here for com-
pleteness. An excellent reference is [B I] and for practical applications the reader is refered to [G I3 and [Al). Some definitions will be stated in order to formulate and solve the problem.

I
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I Definition: A graph is a set of points called vertices interconnected by a set of edges. The vertex
set is denoted by V and the edge set by E and denote the graph by G = (V,E). For

gexample Figure 9 is a graph G = ({v1,v2,v 3 ,v 4M, {,e2,e3).

A graph G is finite if the number of edges and the number of vertices is finite, and is directed
Sif a direction is assigned to the edges. The edges in a graph can be specified in terms of the vertices

they connect. The edges in Figure 8 can be written as: E = [(vl, v 2 ),(v 1, v4 ),(v 2, v3 )J

1 2

I
1"3

Figure 8: A graph with four vertices and three edges.

3If an edge e has a vertex v as an endpoint, then e is incident with v, and if (u,v) E E then u is
said to be adjacent to v. A path from vl to vi is a sequence P =v 1 , e1 , v 2 , e 2, . . ., ei-,Vi of
alternate vertices and edges such that for 1 < j < i, ei is incident with vi and vj,,. Two vertices vi
and vj are connected if there is a path from vi to v.

The basic and minimum definitions have been introduced, and any new concept will be
defined as the material is covered. In order to solve problems using the computer, a suitable data
structure is necessary to represent graphs. In this report, a suitable data structure will be imple-
mented in order to track the linear boundary for graphical representation of multi-class linear

I classifiers. First, the most common data structures are presented.
An Adjacency matrix for a graph G is an n x n matrix such that:

I (i, j) r=E
A (Qj) 0 otherwise

That is if an edge is incident with vertices vi and vy then A (i, j) = 1, otherwise A (i, j) = 0. Thus
the adjacency matrix A is symmetric for undirected graphs as illustrated for the graph of Figure 9
below:

While the matrix representation of a graph is conceptually easy, it requires large storage space
and it is rather difficult to integrate in software. Another corresponding important data structure is
the adjacency list of a graph. In an adjacency list, each vertex has an association list to its adjacent
vertices. Two arrays are needed to represent the adjacency list, one for the labels, and another to
keep track for the next adjacent vertex (The 0 symbol denotes the end of the list). For example
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A v, V 2  v 3  v 4

V1  0 1 0 1
v 2  1 0 1 0

V3  0 1 0 0
V4  1 0 0 0

Figure 9: The Adjacency matrix of example graph. If an edge (undirected in the ex-
ample) exists between the i-th and j-th vertices, then A (i,j) = A (j,i) is set to 1, elseit is 0.

(see Figure 11), to obtain the set of all vertices adjacent to the vertex labeled 1, start with "1" and
the next vertex is NEXT[l], followed by NEXT[NEXT[II and so forth. HEAD[NEXT[11l will be
the label of next vertex adjacent to "I". Some software languages (such as C) permit the use of a
pointer to a structure which makes the adjacency list rather attractive without the need for array
representation. Figure 11 shows the array representation for the adjacency list of the example
graph.

3 Head Next
11 5
2 2 7
3 3 8
4 4 9
5 2 6
6 4 0
7 3 0

5 8 2 0
9 1 0

3 Figure 10: Array representation of the adjacency list for the graph of Figure 8, and the
corresponding Adjacency matrix in Figure 9.

I The complexity of the adjacency matrix graph representation is O(n 2), while for the adja-
cency list is 0(n). Hence, based on complexity considerations, the adjacency list data structure for
graph representation will be used in order to find the class regions for multi-class problems.

The first step is to construct the graph from the lines separating the pair-wise classes. A
separating line will be identified by lij to indicate that this line separates the i-th and j-th classes.SThe same line will also be denoted by '.m +j depending on the fact that it separates two classes is
relevant to the current discussion. The boundary of the region R is determined by scanning the data
for the extremes defined by the set R = ((x, y):xmin: <x XmaX, Ymin 5y 5ymax). The boundary

3 of R will be included in the tracking algorithm, since no point lies outside R.

£
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I The vertices of the graph are determined by finding the intersection of all pairs of lines. Some
of the intersection points lie outside the region R and will not be included in the algorithm. The
following mathematical description will summarize the process of locating the internal vertices.
Loosely, a vertex is internal if it falls inside or on the boundary of the region R.

Let li(x, y) and lj(x, y) be any two lines including the four lines forming the boundary of the
region R. The coordinates of the intersection point (if any) is located by solving a linear system of
two equations. If the lines are given by:

3li: aix+bi y+ci=O (23)

1j: aj x + bj y + cj = 0.

The point of intersection is obtained by solving the above system for x and y. The explicit solution
is:

- -(bjc +bicj), 8*0, (24)

1(aicj-ajci), 8*0, (25)!8
where 8 = (ai bj - aj bi). If 8 = 0, the two lines are either identical or they do not intersect. It is
straight forward to isolate the two cases for 8 = 0, each line is evaluated at a given x or y and com-
pared to the other line.

Having determined the coordinates of the intersection point between a pair of lines, this inter-
section point will be declared a vertex if the coordinates are interior to the region R. The comer
points of the region R, are declared vertices since the boundary of R is included in the algorithm.

The adjacency list is constructed by checking if their is an edge between any pair of vertices.
An edge will exist if both vertices lie on some line. This is accomplished by finding the lines eachvertex lies on. Each vertex is an intersection point and thus the lines defining the vertex are associ-
ated with the vertex. The lines associated with each vertex are compared to determine the
existence of an edge between these two vertices.

After constructing the adjacency list for the graph, each vertex is tested for class membership.3 A vertex v belongs to the i-th class if the following holds:

i to(v) > 0, j = 1, 2, .... , M; j * i. (26)

All the vertices satisfying the criterion in Equation (26) belong to the i-th class and are collected
as a list for the i-th class. This list may contain un-necessary vertices which should be eliminated
as discussed below.

Three or more of the vertices for a given class may be collinear. The collinearity introducesSredundant line segments. If three vertices are collinear, then the middle vertex is eliminated. Only
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U
3 three vertices are tested for collinearity at a given time. The test for collinearity is obtained by

evaluating a 3 x 3 determinant. Let vi = (xi, yi), i = 1, 2, 3 be the coordinates of the three vertices
under testing. Now, if the three points are collinear, then there is a straight line L defined by
a x + b y + c = 0 passing through the three vertices which gives:

3 ax1 +by1 +c=O

ax 2 + b y2 + c =0 (27)
ax3+by3+c=O,(75~~ X3 + b Y3 + C=0,

a homogeneous system of linear equations. A solution (a, b, c) will exist provided that the follow-
ing determinant:

[X2 Y2 1 (28)

[ X 3 Y3 J

I
I
I

151

Figure 11: If three vertices of the same class are collinear, the middle vertex is delet-
* ed.

is zero and the three points are collinear. For example, as in Figure 11, if vertices V1, v3 and v 6
are vertices of class 1, and if they are collinear, then v3 is deleted from the list of class 1. The dele-
tion of a vertex from a given class implies that all edges incident to that vertex are also deleted.
Observe that the line segment between v, and v6 still exists even though the vertex v3 has been
deleted because the edge V6 , v I was defined between vertex v I and v6. If a vertex is deleted from
a given class vertex list, it may appear if it is the vertex of any other class. Hence, a vertex is
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3 eliminated from the graph if it is the middle vertex of some line segments in all the classes.

After deleting the middle vertices from a given class, the resulting vertices (together with the
incident edges) form a graph which we shall denote by a class graph. The class graph may contain
separate connected components and one of these components will define the boundary of the class.
The search for a connected component is standard in graph theory and thus the algorithm will be3 presented for completeness. The reader may consult [HI ] and [G I ] for further information.

The connected component algorithm is a two part program, the first is a depth first search
denoted by dfs and the second is called connected given below:

dfs(v)
[ Given a vertex v and a class graph. Dfs will return the sequence of adjacent ver-I tices. Initially the array visited is set to false.)
visited[v] = true;
for each vertex w adjacent to v do

if w is not visited then dfs(w);
end forU
connected(G)
(Given a Graph G, with n vertices, connected finds the connected components of G

for i= 1, 2,. .. , n
visited[i] + false

for i= 1, 2, .. ., n
if visited[i] = false then dfs(i)
end

end of connected()

The graph scanning algorithms, with the middle vertex deletion would form the core of
the process of eliminating unwanted lines. Figure 12 is the result of applying these tech-
niques to the graph found in Figure 4. Note that in Figure 12, there appears a small region
that does not belong to any class. This region is usually called rejection region because it
cannot be classified in any class. This region is usually small and cannot be eliminated when
using linear classifiers. Of course one would declare the rejection region to be included in
any class, but it will result in higher classification error in addition to the difficulty in assign-
ing it to any class. Thus we will treat the rejection region as a region where no decision is
possible.

The following few pages will cover the classification of four classes for the two simu-
lated data sets given in Table 1. The same classification algorithms will be applied to actual
data and similar plots will be obtained. For the case of actual data, images relating each
cluster to the spatial location. After these figures Fisher classifiers is presented.

I
I
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Figure 12: The result of the boundary tracking algorithm for obtaining the actu-
al decision boundary of the simulated data. The small region around the center
is the rejection region (i.e. the region that belongs to more than one class).
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Figure 13: The decision boundary and the simulated data. In general, the actualI data will not be well separated as illustrated here.
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i Figure 14: Pair wise classification error of the simulated data set as a function of3 classifier parameter s. The decision boundary in the previous two Figures
correspond to the minimum pair wise error.
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3Figure 15: The two simulated data cluster diagram with the decision boundary.

5 3. Fisher Discriminant Criterion

A draw back to the multi-class linear classifier discussed in the previous section is its
time complexity. For each class pair, as s varies over its range ( 8s = 1/128 ), 128 classifiers
are designed and the miss-classification error is computed for each classifier. As the number
of classes and feature dimension increases, the time increases drastically'. Another guide-
line for the design is to find the weight vector V and the threshold V. by minimizing an
1 There are 128 M !/(2!) (M - 2)! classifiers being tested; The classifier with the minimum miss-classification

e or is selected to be the best classifier for that particular training set.

I
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3 Figure 16: The two data set characteristic ellipses and the decision boundary.

appropriate criterion. A common criterion is to find the classifier that separates the distance
between two classes. The Fisher class separability given below would measure the class
sparability and is can be deduced from the linear classifiers:

a+ a i *j. (29)

SThis criterion characterizes the separation between any two classes. Note that the criterion is
always non-negative which implies that its maximum is the sum of the maximum of pair-

I wise maxima. The physical reasoning for this criterion can be understood from the

I
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I

estimated). The following derivation is based on the two class problem given in [Fl]. The
first order necessary conditions are:

I .f =o 0L=o, (30)av aVo

by taking the partial derivatives the following equations result (recall the V is a vector and Vo
is a scalar):

3v a a cr av aln, av a-Mj DV (1

__ _. + + 2L )32)
avo - V o aC-2 a+ O i ,-0 + l-Wj NO2

Since the classifier is linear, (i.e. has the form h (x) = VT x + Vo), then the variances and the
conditional mean take the form:

C ; = VT yV (33)
= VT M, + Vo. (34)

U Using equations (33) and (34), the first order necessary conditions become:

2 [[ 2 +v = (Mi -Mj) ,LL (35)

I fj + = 0 . (36)
ani Ohij

Substituting for the Fisher criterion, the following is the solution for V and Vo:

V (M-MI,). (37)

In comparing with the iterative linear classifier, the Fisher criterion yields maximum class
separation when s = 0.5, hence the threshold is:

= (M1 - M1)T (0.5 Ii + O.51 1y1 (CFMj + cJmi) (38)
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IEquations (37) and (38) define a classifier that minimize the class separation when the
data is normally distributed.

3 4. Classifier Trainning
We shall examine the data used to train the classifier, and study some of their proper-

ties. In particular, the statistical means and covariance matrices. One data set that will be
considered is the satin weave sample with twelve drilled holes. Features are extracted from
the measurement which are classified. The classifier is linear trained from the satin weave3sample segmented data. Figure 19 illustrate the trainning process carried out in this chapter.

Dat MSE Plane -0 egmnentationH Feature Estimation
Extraction Extraction

l Figure 18: Classifier trainning for eddy current data.

I The extracted plane stage refers to the MSE plane subtracted from the raw data in order
to remove the ramp introduced by the data accquisition system. The segmentor is an auto-
threshold based on the histogram of the actual measurement discribed in chapter IX as well
as the MSE plane extraction. The estimation block is the estimation of the classifier parame-
ters. In this chapter only linear classifiers are investigated, and only the first and second
order statistics are required for each class. Training consists of varying the classifier parame-
ters and choosing the classifier with minimum error probability. Other classification schemes
may require different parameters for the characterization of the input data.

I4.1. Feature Extraction
The features extracted for classification are the: (1) real part of the measurement, (2)3imaginary part of the measurement, (3) magnitude of the measurement, (4) phase of the

measurement, (5) forward difference of two adjacent measurements, and (6) forward differ-
ence of magnitude and phase. The feature vector dimension can be adjusted as necessary forUsufficient separability. Note that (5) and (6) gives a total of four features, corresponding to
the real, imaginary, magnitude and phase. The dimension of the feature space is then equal
to eight.

5. Experimental Results
In this section some experimental of some actual measurements are presented. Scatter

diagrams are shown to illustrate the clustering aspect of the measurements and to assert the
the statistical approach can be used to separate flaw regions from background regions. Fol-
lowing scatter diagrams of actual measurements, the results of the two class detection
scheme is presented.

Eddy current measurements are characterized by the in-phase and quadrature com-
ponents. Most of the flaw response is of higher amplitude than that of a background. For
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I future reference the following is the data set that have been examined:

Table 2: Actual data used in classification experiments

Directory Description3 /c/lab.data/1987/sep3O/linedata Drilled Satin Weave Sample
/c/lab.data/1987/nov20 Sample AB -- foil target
/c/lab.data/1 987/decO7 Drilled Satin weave sample
/c/lab.data/1987/decOl Sample B -- flaw and tows

3 The eddy current images have been included in Chapter IX and will not reproduced
here. These images have been collected under different condition to reveal the variations
that exist. Also in chapter IX, the support of the flaw is shown following the segmentation.

5.1. Scatter Diagrams

The laboratory data showed some clustering. By a cluster we mean a collection of a
close measurement points in the feature space. Thus the features are very crucial for separat-
ing the flaws and background. Figure 19 and 20 show the scatter diagram of the raw data and
the filtered data resulting from subtracting the MSE plane. The horizontal axis is the real
part of the measurement and the vertical axis is the imaginary part. The scatter diagram is
constructed by marking the coordinates that correspond to the real and imaginary part. The
Y symbol denotes a flaw measurement as identified from the segmentation and the + symbol
denotes a background measurement.
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IFigure 19: Scatter diagrams of the inu esrmnsof Table 2. The horizan-

tal axis is the real part while the vertical axis is the imaginary part (background
=+, object = Y). (a) Drilled satin weave (Oinedata), (b) Foil target, (c) Sample

IB, ad(d) Dildstnweave (dec07).

I In Figure 19 there are throe clusters and when compared with the images, it appears that
the clusters are due to flaws, background and tows. Extracting the MSE plane from the raw
data, resulted in further separation of the classes as Figure 20 illustrates,

i The scatter diagrams of the feature vector wore shown in the SIXTH QUARTERLY

REPORT and will not be reproduced here. At any rate, the depicted scatter plots do not
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Figure 20: Scatter diagrams of the data following MSE extraction for the dataset of Table 2. Note the increase in class separability from Figure 19. (a)

Drilled satin weave (linedata), (b) Foil target, (c) Sample B, and (d) Drilled satin
I weave (dec07).

reflect the clustering between the eight-dimensional feature vector since only two features
I are shown. Figures 22, 22, 23, and 24 are the result of applying the linear classifier to the

eddy current measurements.
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I PATH: /c/shamee/data/c/lab.data/1987/sep30/linedata
Data file name - smplfltl.dat Param names - smplfltl.prm
Length - 8804 Dimension - 8

Data file name - smplflt2.dat Param names - smplflt2.prm
Length - 48821 Dimension - 8

Class 1
Estimated mean

38.687 20.962 130.762 1.879 0.002 0.003 0.004 0.000

Estimated covariance
21749.879 15774.196 9471.041 -144.701 11977.741 9192.610 5447.168 -88.188
15774.196 12523.123 6190.601 -119.397 8999.604 7387.809 3825.500 -70.786

9471.041 6190.601 19110.424 -17.294 1795.922 1482.286 6713.511 6.353
-144.701 -119.397 -17.294 2.886 -91.729 -76.285 -26.561 1.777

11977.741 8999.604 1795.922 -91.729 23955.611 18192.328 7243.435 -179.911

9192.610 7387.809 1482.286 -76.285 18192.328 14775.635 5308.136 -147.067

5447.168 3825.500 6713.511 -26.561 7243.435 5308.136 13427.813 -20.191
-88.188 -70.786 6.353 1.777 -179.911 -147.067 -20.191 3.554

I Class 2
Estimated mean3 -6.977 -3.780 28.681 3.096 -0.000 0.000 -0.000 0.000

Estimated covariance
1085.493 584.939 342.612 -18.803 560.125 410.775 358.693 -10.943

584.939 643.577 228.059 -22.530 386.641 336.549 273.308 -8.669
342.612 228.059 969.428 -6.364 341.215 274.774 484.018 -7.720
-18.803 -22.530 -6.364 2.196 -9.851 -8.537 -5.703 0.984

560.125 386.641 341.215 -9.851 1120.193 797.395 699.912 -20.794
410.775 336.549 274.774 -8.537 797.395 673.047 548.088 -17.207

358.693 273.308 484.018 -5.703 699.912 548.088 967.978 -13.423

-10.943 -8.669 -7.720 0.984 -20.794 -17.207 -13.423 1.969

s-.078125 Minimum error-.174233 Thd-1.94354

Coefficient Vector

-0.015 0.035 -0.055 0.885 -0.001 -0.011 0.029 -0.480

I
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I PATH: /c/shamee/data/c/lab.data/1987/nov2O
Data file name - solofltl.dat
Param names - solofltl.prm

Length - 15969
Dimension - 8

Data file name - soloflt2.dat

Param names - soloflt2.prm
Length - 41656

Dimension - 8

Class 1
Estimated mean

5.117 -1.099 104.297 2.802 -0.002 -0.001 0.002 0.000

Estimated covariance
11519.121 2745.025 -845.662 -50.461 3972.548 1026.530 -337.464 -23.702
2745.025 5378.015 -256.447 -83.743 958.207 2020.428 199.615 -30.742
-845.662 -256.447 6046.718 -3.677 -215.589 55.416 1310.276 -3.099
-50.461 -83.743 -3.677 3.948 -16.343 -28.327 -3.099 1.828

3972.548 958.207 -215.589 -16.343 7945.003 1984.697 -553.161 -40.042
1026.530 2020.428 55.416 -28.327 1984.697 4040.875 254.946 -59.068
-337.464 199.615 1310.276 -3.099 -553.161 254.946 2620.884 *76.175
-23.702 -30.742 -3.099 1.828 -40.042 -59.068 -6.175 3.656

CClass 2

Estimated mean3 -1.962 0.421 63.693 2.867 -0.000 0.000 -0.000 -0.000

Estimated covariance
4078.428 1086.503 106.316 -26.566 828.565 238.781 140.770 -6.630

1086.503 2701.997 -67.722 -57.104 170.032 669.888 7.858 -12.424
106.316 -67.722 2727.701 -3.134 82.635 -55.111 554.882 -1.493
-26.566 -57.104 -3.134 3.137 -3.710 -12.941 -1.763 1.300

828.565 170.032 82.635 -3.710 1657.118 408.813 223.404 -10.341
238.781 669.888 -55.111 -12.941 408.813 1339.790 -47.254 -25.365
140.770 7.858 554.882 -1.763 223.404 -47.254 1109.756 -3.256

-6.630 -12.424 -1.493 1.300 -10.341 -25.365 -3.256 2.599

3 s-0 Minimum error-.351794 Thd-l.66288

Coefficient Vector3 -0.002 0.002 -0.016 0.024 0.001 -0.001 0.008 -0.017

I
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U PATH: /c/shamee/data/c/lab.data/1987/decOl
Data file name - solofltl.dat

Param names - solofltl.prm

Length - 15932

Dimension - 8

Data file name - soloflt2.dat
Param names - soloflt2.prm

Length - 29774

Dimension - 8
Class 1

Estimated mean

5.033 12.785 96.185 3.238 -0.001 -0.002 0.002 0.000

Estimated covariance

3559.699 173.638 483.715 -3.582 1046.803 217.549 126.875 -0.781

173.638 8189.015 1248.651 -124.862 49.574 2496.769 135.175 -41.761

483.715 1248.651 2685.957 -32.794 55.162 40.872 766.378 -7.111

-3.582 -124.862 -32.794 3.025 0.296 -39.612 -9.797 1.063
1046.803 49.574 55.162 0.296 2093.591 267.081 182.003 -0.482

217.549 2496.769 40.872 -39.612 267.081 4993.419 175.950 -81.367
126.875 135.175 766.378 -9.797 182.003 175.950 1533.089 -16.884
-0.781 -41.761 -7.111 1.063 -0.482 -81.367 -16.884 2.127

I Class 2
Estimated mean3 0.543 -4.662 47.613 3.295 0.000 0.001 0.002 0.000

Estimated covariance3 1066.634 -454.775 168.969 16.383 233.839 39.080 24.397 1.317
-454.775 2586.739 -881.174 -56.091 -193.005 568.147 -210.253 -12.389

168.969 -881.174 1408.470 12.241 93.257 -252.794 381.673 4.523

16.383 -56.091 12.241 3.125 4.812 -10.728 1.357 1.398

233.839 -193.005 93.257 4.812 467.675 -153.939 117.660 6.129

39.080 568.147 -252.794 -10.728 -153.939 1136.191 -463.057 -23.1153 24.397 -210.253 381.673 1.357 117.660 -463.057 763.419 5.886

1.317 -12.389 4.523 1.398 6.129 -23.115 5.886 2.796

3 s-.09375 Minimum error-.246675 Thd-5.08168

Coefficient Vector

-0.001 -0.024 -0.045 -0.385 -0.001 0.012 0.023 0.211
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I PATH: /c/shamee/data/c/lab.data/1987/decO7
Data file name - uni-fltl.dat

Param names - uni-fltl.prm

Length - 5349

Dimension - 8

Data file name = uni-flt2.dat

Param names = uni-flt2.prm

Length - 52276

Dimension - 8

Class 1
Estimated mean

11.047 50.170 695.336 2.828 -0.018 -0.056 0.058 0.001

Estimated covariance

164196.344 105066.508 15490.031 -212.405 101711.781 57900.414 7199.660 -134.742

105066.508 527097.063 27585.699 -920.148 72276.219 333519.156 49115.922 -693.451

15490.031 27585.699 210439.063 -25.729 5081.142 -22784.801 76739.766 48.873

-212.405 -920.148 -25.729 2.773 -124.618 -618.350 -77.111 2.025
101711.781 72276.219 5081.142 -124.618 203421.500 130169.820 12274.604 -259.323

57900.414 333519.156 -22784.801 -618.350 130169.820 667014.750 26312.822 -1311.670

7199.660 49115.922 76739.766 -77.111 12274.604 26312.822 153542.281 -27.757

-134.742 -693.451 48.873 2.025 -259.323 -1311.670 -27.757 4.051

Class 2
Estimated mean5 -1.130 -5.133 55.962 3.223 0.000 -0.000 0.000 0.000

Estimated covariance

2053.746 473.728 34.075 -2.690 1249.477 202.496 -203.647 -1.452

473.728 5279.018 -732.142 -68.939 391.443 3461.592 -469.196 -33.194

34.075 -732.142 4228.723 1.561 361.613 -444.336 1676.725 -2.470

-2.690 -68.939 1.561 2.908 0.599 -33.456 5.669 1.476

1249.477 391.443 361.613 0.599 2498.879 593.939 157.966 -0.853

202.496 3461.592 -444.336 -33.456 593.939 6923.043 -913.533 -66.650

-203.647 -469.196 1676.725 5.669 157.966 -913.533 3353.381 3.198

-1.452 -33.194 -2.470 1.476 -0.853 -66.650 3.198 2.952

S-.0703125 Minimum error=.0599533 Thd-7.54627

Coefficient Vector3 0.003 -0.001 -0.043 0.170 0.000 -0.002 0.021 -0.199

I
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U
3 1. Overview

The conjugate gradient method provides the basis for the present eddy current inversion3 schemes. The purpose of this chapter is to:

(1) Investigate the possible parallel implementation of the algorithm and devise an efficient
scheme for inversion.

(2) Use the characteristics of the inversion algorithm to design a specific machine.

We applied both (1) and (2) to the conjugate gradient inversion and designed a parallel
machine to invert eddy current data. We approached the design from a practical point of view,
and discuss the factors that led to the architecture of the parallel machine. In addition, we
estimated the inversion time to be comparable to high speed main-frames. We shall give a com-
plete discussion of our approach and justify our assumptions.

Starting with the basic inversion algorithm, one observes that the algorithm is sequential.
Sequential algorithms are those algorithms that proceed from one step to the next in order. Ord-
ering the execution steps implies that the overall performance depends on the time and space
complexity of each step. Furthermore, each step usually provides input for its successor, which
prevents the execution of two or more sequential steps simultaneously. This imposes a natural
limit on the time complexity. The overall time complexity can be improved only if the time
complexity of each step is minimized, or in our case optimized. The optimization is thus res-
tricted to each step of the sequential process which can be performed by parallelizing that partic-
ular step. The architecture proposed depends, in general, on the algorithm being implemented.
The inversion algorithm via conjugate gradient is essentially sequential. If an alternate non-
sequential algorithm inverts the data, the proposed architecture may or may not be efficient.

The machine architecture is a pipeline architecture. It achieves higher performance meas-
ure when more than one data set is inverted. The sequential order of the inversion scheme res-
tricts the number of active elements in the pipe for a single problem. When more than one inver-
sion problem enter the pipe, then more than one element could be active to improve the overall
performance of the system. We will address performance in a later section.

The next sections will cover two inversion schemes and their corresponding architecture.
Even though both schemes are based on conjugate gradients, and are used for inversion, they are
different from an algorithmic point of view. We will present the algorithms, their corresponding
architecture, evaluation and methods to simulate their performance on the parallel machine.

i 2. Inversion of Eddy Current Data Via Conjugate Gradient
The conjugate gradient is the main inversion tool used to obtain three-dimensional conduc-

I tivity structure of the scanned material. Two schemes are currently used: (1) unconstrained
inversion, and (2) constrained inversion. The factors that will determine the performance of the
inversion are the size of memory and task partition. The first involves the space complexity of a
given inversion scheme, while the second involves the dynamics of the inversion. Both aspects
will be studied in order to design a parallel machine that will execute the inversion with good3 performance. The next two sections will address the size of the inversion problem.

I
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I
2.1. Unconstrained Inversion

In the unconstrained case, the inversion is a sequential process based on the conjugate gra-
dient method. The algorithm to invert the eddy current images is presented next without detailed
explanation since the details have been presented in chapter II.

I Unconstrained Conjugate Gradient Inversion

W Sk =A 0 Pk (1)
IIQk-1 ,[2I a k- 1 (2)11 Sk 112

Xk = Xk-1 + ak Pk (3)
SRk = Rk-1 - ak Sk (4)

Qk = A* ORk (5)

I bk =IQk 112 (6)
IiQk-I 112

5 Pk+I = Qk + bk Pk (7)

The following is a discussion of the unconstrained inversion scheme given in Equations (1)
through (7). The known parameters prior to executing the algorithm are:

I Table 1: Apriori Parameters of the Conjugate Gradient Inversion

Known Quantities, Unconstrained Case
Nf Number of frequencies used in the inversion.
N, Number of rows in the measurement.
Ny Number of columns in the measurement.

N, Number of layers to be inverted.
A A matrix with pre-computed elements.
A * A matrix with pre-computed elements, or derived from A.SX Initial guess or a convenient starting vector.

These quantities start the algorithm and invert the data. If X. denotes the initial guess of
the conductivity, then X. is a vector with N. components. Each i-th component of X, is a
matrix reflecting the conductivity at the i-th layer. The jk-th element of the i-th matrix is the
conductivity of the jk-th point at the i-th layer. Strictly speaking, the initial guess X, and the
solution X, are matrices with dimension equal to (2 Nx Nz) x 2 Ny, where (2 Nx N.) is the
number of rows and 2 Ny is the number of columns. However, we shall refer to X as a vector or
as a matrix depending on the context. A typical conductivity vector X has the form shown in

I
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I
3 Figure 1, and each iterate will have the same basic form.

I I o'I.2 "., " OI.N, U0 ,+2 " 01 .2,

i N.1 CN, "2 N2., 0
2N,+] 02.N,+ 2" 0

" 2.N,I N.. I oC.,2 ... C2N ., 0  .+.I O.NV,+2"'" 0 N..2N,

I

O N1. ,1 O1 .2  .. arl.N , O I.N+I 0
1 N,+2 . .. 

0 
1,2N,

C72. 02 '.2" oZ+, 02N,+1 0 2.N,2 "" 0 2.

CN..I C .. " aN.. N,.N,+l O,.,w2"" 0 N*N..,

I 0N.+1.1 0 .+12" 0.. .+.N, 0 N.+I.N,+I 0 N+l.,+2" 0 N.+1.2NY

%o . .I 2N .2 ... N..N, 2N..N,+2 ' .. 0.., 2NI ,

£ Figure 1: The conductivity matrix used in the Conjugate Gradient Inversion.

The conductivity at the jk-th sample point is denoted by cjk, and the layer number has to
specified in order to uniquely identify the conductivity. The O's have been appended in order to
use an efficient scheme for convolution and it is not necessary to store these elements. If the
measured data is denoted by Y, then this vector would have dimension equal to 2 NI Nx x Ny
because Y has a real (in-phase) and imaginary (quadrature) components for each frequency. The
elements of A are known a priori reflecting the sensor model and other parameters. The first step
in the inversion is to evaluate the quantity R0 given by:I

Ro=Y-A OXo, (8)

I where the circle operation 0 resembles matrix multiplication to a great extent. Equation (9)
defines the circle operation to mean a sequence of elementary operations on two matrices as fol-
lows: Suppose A is an augmented block matrix composed of submatrices T, then A 0 X is a
vector whose i-th component is a matrix defined by:

I (AOX)i .,Tij*Xj=Ti .*XI+Ti 2 *X 2 +'TW, *XN,, i=l, 2, ... , 2N, (9)
j=1I

I
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3
where * is the two dimensional convolution. If the convolutions were replaced by the matrix
product, then 0 would reduce to ordinary matrix product. It is not our intent to construct a
mathematical structure showing the relation of 0 to ordinary matrix product, however, it is
important to note the similarity with the ordinary matrix product, since if the convolution is
defined as a fundamental operation (in terms of hardware as multiplication), then many of the
available results about matrix product optimization extend in a natural way to the operation
defined in Equation (2). The problem of reducing the inversion time would then focus on the
enhancement of the convolution. The structure of the matrix A is shown below:

i T 1.1  T2, 1  T1,N,

A= T2"1  T2,2 ... T2'N "

T2N.I T2N,2"'" T2Nf.NJ

I Expanding each Tij yields the following equivalent: the following is equivalent:

t11 1. 1 11 1, 1 11 .11,N
t 2,1 t2.2 2,2N, 2.1 122 t,2^, ... 12.1 t2.2 t, 2.2N,f1 1V.,1 121..2 •. t~,.Wt 2,.1 N . tV..2 t 2N- 2VJ 1.2  12V..1 t 2N.,2 ... t2l%2%j 1.NzEt1.1 tl,2 1 2 1, 1 ti 1,2 t 1 ,2N 1 [t , t1.2" t , 1

A 12.1 t2.2 . , j 12,1 12,2 1, 2.2%l . 2,2 t 2.

12N.,1 I 2N.,2 t2N"2 2.1 Lt.12,1 t2N.2 " 
t 2N '.2N, 2.2 t2N.. t2 .. 2 12N..N, ZNZ

E 2. "'" t.2.2N, J I 1 2.2.. t, 2.2N, J ... 12.1 12.2 1,.2.2N,3 12.1 t21V.,2 ""t .. , 2NL. ,2N ..1 2N .. 2 t 2 V.. -- 21 W1 2 t2N..1 t2N.2 .. 2N,l

I Figure 2: Matrix A used in Conjugate Gradient Inversion.

The dimension of the A matrix is (2 Nf) (2 N,) x (2 Ny) N. (i.e. A has 2N1 2 N rows and
I 2 Ny N, columns).

The measurement vector Y has the dimensions of (2 N1 ) Nx x Ny. Note that with dimension
of Y, there is a discrepancy in Equation (2), since necessarily the i-th component of A 0 X is
2 Nx x 2 Ny which does not equal the dimension of the i -th component of Y. Deleting all entries
but the first N. x Ny of the i-th component of A 0 X resolves the discrepancy. It appears that
there is some redundancy in this formulation, i.e. augment additional entries to X and then dis-
card elements from A 0 X. Some analysis may be necessary to investigate the current formula-
don and/or alternatives (if possible) to perform efficient convolutions.

I
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The unconstrained algorithm, depends on a matrix A* obtained from A in the following
manner. Recall, A is composed of submatrices Tij, i = 1 ..., 2 Nf, j = 1 .... , N. For each
submatrix Ti.j, the Hermitian transpose Tfl . defines the i, j-th submatrix of A'. In other words,
the following is A:

7,2" T", ... ,"N,

A' THI T2*2 ... T,2N,H "", T2NH,32 ,1 TNf 2  NfN,

For completeness, the Hermitian Transpose means to take the complex conjugate of each
entry and transpose the resulting matrix. A * and A will have different dimensions (but not size)
only if the measurement dimensions are not equal (i.e. N * Ny). When A * is expanded, the fol-
lowing is equivalent (in terms of the elements of A):

t' 1,1" 122 ... 2,%1.6T.7, 72.?N, T. 2N ,N. 1.2 6 
1 ^,, 2, 2. 1.NZ

A*= T1. 722 .. 2.2 T12 2.2 . 22N. .. 1i.2 72.2 ... 7,N

312N 722N J2,.N t [Jyt.N . y N 1.N 2.2Ny t2Ny.2N.
A' . T I -. -" 1 2.1 T,2.1 " "I 1.2. [1., t.1 "" . 2N.

-1.2 T2.2 ... 72.2k T1 .2  2,2 ... 2.2N. T 1 2.2 ... 2. 2N.

Figure 3: Matrix A * used in Conjugate Gradient Inversion.

where - is the complex conjugation operator. The dimension of the matrix A * is
(2 Nf) (2 N,) x (2 N.) N. (see Figure 3).

The input vector is the actual laboratory measurement obtained from scanning the work-
piece and is frequency dependent. Both A and A * also depend on the sensor since they incor-
porate the its model. The input measurement is denoted by Y, with dimension equal to
(2 Nf)N x N,. Y has the following form:
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!

b*1  b1.2 b...

b b2.1 b2.2 b b2NA

4 b ., 1 bN .,2 ... ON , 1

3i "" b1 ,2 b,

b 2 .1  b 2 .2

I bM I b V..2 bN 2N

3 Figure 4: The input measurement matrix.

where bij denotes the measurement at the ij-th sample point. The frequency must also be
specified to identify a particular sample point. The real (in-phase) matrices occupy the first Nf
rows and the imaginary (quadrature) matrices occupy the remaining N1 + 1 to 2 Nf.

In summary, Table 2 and 3 show the equations and the memory requirements for the uncon-

strained inversion. The total memory requirements depends on the product of the inversion
parameters given in Table 1. In the architecture proposed, the amount this memory is essential
to speed the inversion. In Table 3, some numerical calculations have been performed for dif-
ferent parameters.

I
I
I

I
I
I
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3 Table 2: Memory Requirements For Unconstrained Inversion

Unconstrained Inversion Space Complexity
Variable Equation Size in numbers

g Sk Sk =A OPk 2 Nf N x N.

ak ak= IIQk-] 112 1

Xk Xk Xk-, + ak Pk 2 Nf N, x N.

Rk Rk =Rk-I - bk Sk 2 Nf Nx x Ny

I Qk Qk=A* OPk 2 Nf Nx x Ny

bk bk IQkI12  1b b = IQk-1 112

I Pk+1 Pk+1 =Qk + bk Pk 2 Nf Nx x N.

3 A (2 Nf)(2 N,) x (2 Ny) Nz

A * (2 N-)(2 Nv) x (2 Nx) Nz

I Total (2 Nf) (Nx N) (8 Nz + 5)

I
I
I

!
I
I
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£
Table 3: Unconstrained Inversion memory requirements for some configurations.

Memory Requirement

N, N, N. NX Size in Numbers
1 16 16 6.5K

1 1 32 32 26.0K
1 1 64 64 104.0K
1 1 128 128 416.0K
2 2 16 16 21.OK
2 2 32 32 84.0K
2 2 64 64 336.0K
2 2 128 128 1.3M
2 4 16 16 42.0K
2 4 32 32 168.0K
2 4 64 64 672.0K
2 4 128 128 2.6M
2 8 16 16 84.0K
2 8 32 32 336.0K
2 8 64 64 1.3M
2 8 128 128 5.3M
2 16 16 16 168.0Ka 2 16 32 32 672.0K
2 16 64 64 2.6M
2 16 128 128 10.5M
4 8 16 16 148.0K
4 8 32 32 592.0KS4 8 64 64 2.3M

4 8 128 128 9.3M
4 16 16 16 296.0K
S16 32 32 1.2M

16 64 64 4.6M
4 16 128 128 18.3M
8 8 16 16 276.0K
8 8 32 32 2.2M
8 8 64 64 43M
8 8 128 128 17.3M

I8 16 16 16 552.0K

8 16 32 32 2.2M
8 16 64 64 8.6M
8 16 128 128 34.5M
16 16 16 16 1.0M
16 16 32 32 4.2M
16 16 64 64 16.6M
16 16 128 128 66.3M

16 25 16 16 1.6M
16 25 32 32 6.5M

16 25 64 64 26.OM
16 25 128 128 103.9M
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I
2.2. Constrained Inversion

The constrained inversion is used when the solution vector is known apriori to be
contained in some subset. Hence, the solution must satisfy certain inequality constraints.
The constraints are used to formulate the inversion as discussed in chapter II. The space
complexity is on the order of the unconstrained inversion, and the main distinction is the
algorithm flow and control as illustrated below.

Constrained Inversion

I Step1: R 1 =B-AS 1 , Q,=SAR 1
if 11QIII< s Then terminate.I {l1 (Yij Sjr [CFnin, Omul

Step 2: Hij =10 otherwise

I If H a 0 Then Step 5
PI =H Q1

fIIH QkI 12
Step 3: T=ASPk, ak= JITI12 Xk+1=Xk+akPk

If ij 4 (omin, amax) for any i, j Then Step 4

Rk+l=Rk-akT, Qk+I=HSA* Rk+l

I 1 Qk+111 2< oIIR+ < Then terminate.
1 2 or I 1125 bk = 11 k.I112 , Pk+l = Qk+1 + bt Pk, Go to Step 3

IIQk 112

3 S t e p 4 : c =
cnn[ Xmax-OiJ Sie,]l-OjSil

Ioij Soj > xn Sij Pv- sjj < x = i

Il = Gk+1 + C Pk+1
Step 5: If (IQk+111t< c Then terminate.

SPij = min Qij - , dij Xij. If i 112 < c Then terminate.
k-jj > 0

01 =Ok+I +P

cX= min i n [Xmax ij. S 1  m' m ij X- ,!Oij Soj > X ."j i li j < X i i i

c=min c, PQ -i , =cyk++c P. GotoStep1

I
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3. Pipeline Architecture For Inversion

In this section, the architecture for executing the conjugate gradient inversion is
presented. The basic idea is to partition the conjugate gradient algorithm into steps and
execute the steps in the order they appear. It should be pointed out again, that the CG
algorithm is sequential which imposes a natural limit on the degree of parallelism that
could be achieved.IIn the following, a general pipeline architecture is presented. This architecture
achieves parallelism within the stages of the pipe and as will be seen it achieves higher
performance when more than one data set are inverted. Figure 5 below illustrates the
pipeline architecture of the inversion. As the data enters the pipeline, the First In First Out
(FIFO) queue organizes the computational load and keeps the pipe full, after each iterate,
a decision is made whether to terminate the inversion or to enter the FIFO again. If the
conjugate gradient algorithm terminates, then the solution is stored (addresses to the solu-
tion) in the Last In First Out (LIFO) queue. The incoming data can use the previous solu-
tions as initial guesses. For neighboring scan areas, the solution vectors are in the neigh-
borhood of each other. This observation could speed the convergence of the conjugate
gradient inversion.

DAT Pr3ss iing FIF

SCL2I

3 CL N

I Figure 5: Pipeline architecture for conjugate gradient inversion.
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I
Each computational layer is denoted by CL and is used to perform certain tasks

corresponding to the Conjugate Gradient. The processing consists of the initialization of
the variables and for using the data in the LIFO for initialization. To achieve high3throughput, as the data is obtained over a large workpiece (or resampling the same area),
the previous solution can be used to initialize the current solution and thus the speed up is
obtained from the prior solutions and the pipe structure. In the following, the uncon-
strained graph is obtained and mapped onto the pipeline architecture, then we move to dis-
cuss the constrained case and then we present the task assignment for sufficiently large
class of computational algorithms which are suitable for this pipeline architecture. Note
that parallelization is not broken down to the lowest possible level, since the lowest level
of parallelization increases the complexity of the design. The use of available computing
VLSI chips, the system could achieve very good behavior at higher levels. From the pre-
vious section, the fundamental steps could be seen in the following Algorithm Graph:

I
I , --- C -O

Figure 6: Algorithm Graph of the unconstrained conjugate gradient inversion.
Note the similarity with the pipeline architecture from this graph.

Figure 6 illustrates the sequential process of the unconstrained version. The paralleli-
zation is performed at each of the steps in order to decrease the inversion time.

If the LIFO data is used to initialize the incoming inversion problems, then a flawed3scan region may initialize an unflawed scan region. The deviation of the initial condition
(from zero) may slow the convergence of the unflawed region. A method to avoid such a
problem is to use the segmentor developed in Chapter IX to isolate flawed scan regions
from unflawed regions. Then the solution to a previous flawed region would initialize the
incoming flawed region. The increase in processing overhead introduced by segmentation
must be evaluated to determine if the overall inversion time would improve.

The constrained case is different because of the algorithm control and the additional
computational load to satisfy the constraints. The main difference from an algorithmic
point of view, are the cycles present in the constrained case as illustrated in Figure 7. The
repeated step would delay other steps present in the pipe if the cycle duration is long
enough. In a later section, a general scheme to execute the cycles without delay will be
discussed. For the conjugate gradient inversion, the looping in step 3 could be eliminated
by examining the behavior of the constrained case if step 3 did not return to itself, rather
exit to the beginning of the algorithm. It was determined that the constrained conjugate3 gradient will converge if step 3 was not executed repeatedly. The following graph is the
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g imodified constrained conjugate gradient for inversion.

I 4 3

I

Figure 7: Algorithm graph for the constrained case. The cycle (step 3) is not
desired for reasons discussed below.

Appendix A of this chapter, describes the details of the conjugate gradient
modification. Next, we present the parallel machine motivated by the conjugate gradient
inversion. The machine can be configured into a pipeline architecture to execute the con-
jugate gradient and improve the system throughput.

I

£ Figure 8: Algorithm graph of the constrained case after modification of the
cycle.

I
I
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4. A Parallel Machine for the Conjugate Gradient

In this section we present and discuss the architecture of a parallel machine to exe-
* cute the conjugate gradient inversion. We shall denote our machine by the PWP Machine.

While the PWP machine presented is not new in the domain of parallel computers, the
recent development in Digital Signal Processing (DSP) chips permits the design of a rela-
tively cheap and high performance system. The basic design philosophy of the PWP
machine is to: (1) achieve parallelism at higher levels, (2) minimize input/output
bottlenecks, and (3) consider computation bound problems only. These factors (1)
through (3) restrict the PWP machine to computational problems only.

Even though the machine is designed with the conjugate gradient in mind, it will
become apparent how to execute other iterative algorithms as well. The primary measure
of the PWP performance is the overall time of executing the conjugate gradient for invert-
ing eddy current data. In addition, a performance comparison between some of the current
machines and the expected performance of the PWP machine will be presented. Other3 factors [E include flexibility, cost, availability and reliability will be addressed as well.

Many parallel machines utilize the memory as a common resource, the PWP machine
does not rely on shared memory. Difficulties arising from shared memory are reduced at
the expense of increasing the local memory. Some of these problems are synchronization,
memory contention and I/O bottlenecks. By having a parallel system with sufficient local
memory, the tasks can be executed locally and conflicts among the various processors is
reduced. For very large problems (i.e. those problems that exceed the local memory), the
PWP architecture permits memory sharing among the various processors. Hence, for a
given problem of the conjugate gradient order, and with the current DSP chips, the PWP
machine performs at a high computational rate. The multiple bus architecture proposed
speeds the data transfer between the various units to reduce the idle time of the processors.

3 The machine is a linear array of processors connected by multiple bus lines. The
processors which form the computational part of the machine are identical leading to a
Homogeneous system. The main unit interfaces with the user in order to specify task3sequencing. Figure 9 shows the overall architecture.

A good portion of this report is devoted to scheduling the conjugate gradient on the
PWP machine. The programming is done by the user at the main unit and must be fami-
liar with the PWP architecture to schedule the various processors. Some of the scheduling
techniques available will be discussed as well as the architecture.

Figure 10 shows a single computational element (CE). The local memory of each CE
is sufficiently large to execute a task without the need to request data during task execu-
tion. The CE transfers data via the multiple bus lines through the Bus Interface Unit
(BIU). The number of data lines depends on the number of transfers desired and other fac-
tors such as speed of transfer and bandwidth. For the time being, the PWP architecture
allows the number of bus lines to be a parameter to be chosen in later stages of the design.

3 Each Bus Interface Unit (BIU) has sufficient hardware to relieve the DSP from the
bus control. With the local control of the BIU, the multiple busses appear as a single bus
to the DSP and memory. In the next section the data transfer and processors interconnec-
tion will be presented.
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Figure 9: Overall architecture of the PWP machine. A DSP chip forms the
integral computational component of each element and the computational ele-
ments are connected by multiple busses.

5. Interconnection Architecture

In this section the interconnection scheme among the computational elements is
presented. The components (CE's) send I/O requests to the main unit which maintains a
message queue and the bus control. The actual data transfer takes place on any of the
available busses under the main unit control.

The Control Comm (CC) bus (see Figure 10) is used by all processors including the
main unit. Since the main unit is the bus arbiter, additional simple circuitry is added to
determine which bus is available, or if all the busses are busy. To each bus (A, B, C, and
D of Figure 10), a signal indicating its activity is assigned and is denoted by BUSY. If
BUSY is asserted then the bus is not available otherwise the bus is available for data
transfer. At this time, the BUSY signal could be asserted only by the main unit. With
multiple busses, each bus would have a BUSY line.

Figure 12 shows a simple circuit composed of logic gates to maintain the activity
status of the multiple busses. The circuit schedules the busses in order so that the main

I
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Figure 10: A computational element (CE) of the PWP machine. The data is
transferred via multiple data busses controlled by the BIU. The multiple
busses appear as a single bus to the components of the CE because of the local
control of the BIU.

£ unit knows of the available busses. Only four busses are shown in Figure 12 since the cir-
cuit can be generalized in an obvious manner.

I
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I 0
Figure 11: The communication requests are sent to the main unit to send or

I receive data among the components of the PWP machine. The actual data is

transferred on the multiple busses (shaded area).

I Denote the activity signal of the busses by BUSY-A, BUSY-B, BUSY-C and

BUSY-D corresponding to the four busses shown in Figure 10. The signals EN-A, EN-B,
EN-C and EN-D are the enable signals for the A, B, C and D busses respectively. The

not busy, enable Bus B only if A is busy and B is not busy, enable Bus C only if A andoi ucinascae ihti ici st:eal u o aatase onyifAi
are busy and C is not busy, enable Bus D only if A, B and C are busy and D is not busy,3 n finally ialbussare busy th ATsignal is asserted.

The enable signals switch the data bus of the CE's to the multiple busses. For exam-
I ple, if EN-A is asserted for a given CE, then the CE transfers data on bus A. The remain-I ing busses transfer data in a similar manner.

The communication protocol to transfer the data among the components of the PWP3 machine is based on handshaking. The source requests an I/O transfer via the main unit,

I
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Figure 12: A simple circuit to select the next available bus. The WAIT sig-3nal is asserted only if all busses are busy.

the main unit acknowledges the request and transfers the request to the receiving CE. The
receiving CE in turn acknowledges the main unit request, the main unit then holds a bus
and informs both CEs of the bus. At this state, both CEs terminate the transfer via their
handshake signals to inform the main unit that the transfer is terminated. The main unit

I then releases the bus and continues other tasks.
Since only handshake signals and requests are processed in the main unit, other I/O

requests wait a minimal amount of time in order to be acknowledged. Most of the time of
I/O data transfer is spent on the transfer and not the protocol. Thus the transfer of larger
data with one request has only one protocol delay in comparison to smaller transfers. ThisI justifies in part the use of sufficiently large local memory in each CE.

6. Task Scheduling

The PWP machine will accomplish the computational task for inversion of eddy
currents and other computations only if the problem has been properly divided into tasks
and CE sequencing. Recall that sequential problems impose a natural limit on the degree

3 of parallelism and hence speed of execution. Task scheduling is one way of organizing

I
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the inversion to achieve high speed and thus good performance.

Some concepts have to be explained here in order to proceed with the design. The
reference is a paper by Gonzalez [G I] which will be utilized.

Measures for evaluating a parallel system have been defined in [GI] and [All. These
measures allow us to evaluate the performance of the PWP machine. The following are
the measures: (1) completion time of a schedule is the total time it takes to complete the
schedule. A schedule is a collection of tasks that specify a given algorithm. For example,
to invert the data, the overall inversion problem is composed of tasks in a given order that
specify a schedule, (2)flow time of a task is the time it takes a task to complete and the (3)
flow time of a schedule is the sum of all task times in the schedule, (4) mean flow time is
the mean time of a task and is obtained by dividing the flow time of the schedule by the
total number of tasks in the schedule, (5) processor utilization is equals the time a given
processor is active, (6) processor idle time is the time a given processor is idle and it also
characterizes the processor utilization, and (7) Throughput is defined as the number of
tasks processed per unit time and is then inversely proportional to the sum of processing
times of individual task sets. The measures (1) through (7) defined are used to formulate
design criteria as follows [CI]:

(1) minimize finishing or completion time,

(2) minimize the number of required processors,

(3) minimize the mean flow time,
(4) maximize processor utilization, and
(5) minimize processor idle time.

While the measure in (1) is used in this report, measures (2) through (5) are less ade-
quate for the inversion task even though they may be used to design the machine and task
scheduling accordingly. The cost of the machine increases as the number of processorsI increases. While the cost is important, the completion time should be the dominant factor
up to a certain point. As it will turn out, with the DSP implementation, the cost is reason-
able when evaluated relative to the expected completion time.

Measures (3) through (5) are directly related to the programming of the parallel
machine. The more these measures are weighed, the harder the programmability of the
machine will be.

The following useful diagram will illustrate the various measures that depends on
task times. Figure 13 shows the time chart of a parallel machine with four processors.
This diagram is known as Gantt Diagram and it is very useful for parallel machines
analysis since it could be thought of as a state diagram for the machine as time increases.

Referring to Figure 13, the time to execute a given task is enclosed in open brackets.
The schedule is composed of five tasks, Ti, T2, T3, T4 and T5. The completion time is20 units since the schedule is completed when the second processor has completed task 5.

The flow times of the tasks T 1, T2, T3, T4 and T5 are 17, 16, 13, 3 and 8 respectively.
The flow time of the schedule in Figure 13 is 57, while the mean flow time is 57/5. The
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Four processor Gantt Diagram

P1 T1 (4) 1 T2 (7) 1 3 (5) (2)3 P2 _(2) T 2 (5) (5) T4 (3) 1 T5 (4)
P3 T5 (4) 1TI (3) 12 (4) (3) TI (5) 13P4 (1)J Ti1 (5) (2) T3(8)(3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Figure 13: An example of a Gantt diagram with four processors. The di-
agram shows the status of the machine while executing the various tasks.

processor utilization is 18, 13, 16 and 17 corresponding to P1, P2, P3 and P4 respec-
tively with idle times of 2, 7, 4 and 3.

While performance measures defined above characterize the machine, it can be seen
that each measure reflect an aspect of the machine performance. Since the machine is for
computation use and is motivated by the conjugate gradient for inversion, homogeneous or
identical CE's will simplify many steps to follow. For example, if one CE performs a
given task very quickly, say addition, then most of the additions will have to be performed
on the given CE. This introduces difficulty in routing the addition tasks to that CE and
may slow down the machine for a general computation algorithm. Thus when considering
a complex task as eddy current inversion leaving the system homogeneous would simplify
task scheduling. No attempt is made to survey all the work done in various areas of task
scheduling, only the ones relating to the PWP architecture and constraints will be exam-
ined, inparticular [GI] and [Hi].

As mentioned earlier, the completion time is the measure of performance that will be
used given a fixed number of processors. Many parallel scheduling techniques assume the
existence of sufficient number of processors to arrive at an optimal solution for a given
problem. For example, in matrix multiplication, the number of processors depends on the
size of the matrix [K3]. In matrix multiply, a processor is a multiplier or an adder. This
dependency while adequate for VLSI systems, cannot be assumed for the PWP machine.
As we will show later, the performance of the conjugate gradient inversion depends on the
number of computing elements. In particular, the number of frequencies and layers deter-
mine the number of computing elements. However, once the number of computing ele-
ments is determined for an inversion problem, it cannot change, and the computing ele-
ments have to be scheduled to solve any inversion problem. Since the computing ele-
ments are general computational devices with their supporting memory and hardware,
specifying their number should be approached with care. The number of CEs should be
determined by the size of the most frequent inversion problem in order to decrease
hardware cost.

I
I
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There are two basic scheduling strategies: (1) Preemptive and (2) Non-Preemtive or
Basic. Preemptive scheduling deals with creating schedules that admit task interruption
and manages task priorities. Basic Schedules are the schedules that do not admit task
interruption. The conjugate gradient, or most computation type problems, seem to fall
under basic scheduling because computation bound problems (specifically conjugate gra-
dient) can be scheduled according to a specific algorithm with known execution time. The
basic idea of the PWP machine is to solve computation bound problems and not handle
tasks that deal with interrupts such as multi user or external interrupt. Thus only basic
schedules will be considered.£ The following scheduling algorithm is adopted from [HI] and has been adapted to
work with the conjugate gradient. The next section will consider both the constrained and
un-constrained conjugate gradient inversion schemes. Now, a general terminology and
methodology is presented [H I ].

Given n tasks representing the inversion algorithm with a partial order. It is desired3to know how to arrange the tasks, given a fixed number of processors, and given a set of
tasks, how to find the minimum number of processors to execute them. In [HI] it was
assumed that all the tasks take an equal amount of time to complete and no cycles are
present in the graph. In what follows, these assumptions will be relaxed to include tasks
of unequal duration and cycles. First Hu's paper will be explained in short detail to pro-gvide the terminology and the scheduling solution under the assumptions stated.

a 3 4 5 6

1 09 to

1

Figure 14: An example of an algorithm represented by a graph. Note that the
graph contains no cycles.

Consider an algorithm represented by a graph as in Figure 14 with no cycles and each
task time is one unit. A partial order, denoted by <, is defined by the directed arcs. For
example, N 2 < Ng, NI < N& meaning that task 2 and task 1 have to be completed before
task 8 begins. Note that N8 < N1 2 and N8 < NII but NII is not related to N12 and that

I
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3task 11 and 12 can be executed independently of each other.
Hu's sequencing algorithm is to assign labels to the nodes of the graph according to

the following rules:

(1) A node Ni is labeled with ai = 1i + 1 if 1 is the length of the longest path from node
Ni to the final node G. The final node G receives the label of I since the length to
itself is zero. If there is more than one final node, an empty node E is created so
that all final nodes precede E. All adjacent nodes receive a label of 2. If the long-
est path from node Ni to the final node G is not unique, then the choice is arbitrary
and any one longest path is admitted.

(2) Sort the nodes according to the labels given in step (1) and redraw the graph with
I all nodes of the same label are on the same level.

(3) Choose any m nodes of the graph such that these nodes are not the predecessor of
any other nodes and m is the number of available processors.

mm9 Level 3

I [ IIW 13 Level 2

* 14

3 Figure 15: Graph of Figure 14 after labeling according to steps (1) and (2) of
Hu's sequencing.

m When steps (1) pand (2) are performed on the graph in Figure 14, the resulting
graph is shown in Figure 15. Note the partial ordering is still preserved, and step (3)
identifies the tasks with the available processors. Suppose there are m processors avail-
able, so the m tasks are removed from the graph in order to be completed. After one time
unit, the graph reduces to Figure 16 when m is equal to four. This example will be carried
further to illustrate some concepts that will arise for the conjugate gradient. The Gantt
diagrams (in Figure 17) corresponding to Hu's sequencing of the graph shows the com-
pletion time as the number of processors increases from one to seven. The completion3time remains the same (five time units) for the case of four through six processors. The
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Figure 16: Hu's scheduling of the graph in Figure 14. The number of avail-
able processors is equal to four, hence only 4 nodes are removed at a time to
yield (A) through (D).

*min'num completion time is obtained when seven processors are used, which correspond
to the largest number of nodes over all levels obtained from Hu's sequencing.

In relation to the pipeline architecture, if the number of computation layers is to
equal to the number of levels, then we would require a larger number of processors to use
the pipeline architecture for minimum completion time. For the example, we would
require seven, three, three, and one processor (total of fourteen) corresponding to Layer I

I
through Layer 4 respectively. With this configuration, the throughput would be one
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Figure 17: Gantt diagrams of the example when executed on a parallel
machine. As can be seen, increasing the number of processors may not al-
ways decrease the completion time.
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schedule per unit task time. The completion time measure is plotted in Figure 18 versus
the number of computing elements. The graph is valid only for the example, but it illus-
trates the point that a parallel machine depends on the algorithm, and in particular, on the3 tasks partial order.

The conjugate gradient inversion will be analyzed in a similar manner in the follow-
ing sections. First the cycles and the problems they introduce are discussed.

3 16.0 Completion Time Measure

i ~ 14.0

V)

12.0

4.00

I

E

I-

C 6.00
0

0

.

3 2.00

1 0.00
0.00 1.0 2.60 3.0o ,4.0o 5.60 6.00 7.00 9.0

Number of ProcessorsI
Figure 18: The completion time is not a monotone decreasing function of the
number of processors. Note the flat region between four and six processors.

36.1. Cycles in Algorithm Graphs
In computational algorithms, a set of tasks is usually repeated many times. The

repetition appears as cycles in the graph of an algorithm. When considering a pipeline
machine, or the PWP machine in the pipeline configuration, cycles introduce problems to
the pipeline architecture. The problem is the fact that if the cycle duration is large com-3 pared to the other tasks, then the other tasks will not propagate through the pipeline but

I
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3 will wait for the cycle to terminate. This behavior slows down the parallel machine since

the processors not executing the cycle will be idle. In the following, we shall present
some methods to handle this situation and in particular the cycles present in the con-

Sstrained conjugate gradient.
The first scheme which worked for the conjugate gradient is to eliminate the cycle.

A detailed analysis of the modified algorithm is in Appendix A of this chapter. Cycle
elimination method is very restrictive and cannot be applied to arbitrary algorithms. An
alternate scheme was developed to handle cycles in more general settings.

The cycle could propagate through the pipe if every processor in the pipeline can
execute the tasks in the cycle. Hence, with the PWP machine, every processor executes
the cycle once and transfers the data to the next processor in the pipe. This scheme is not
restricted to the PWP machine, but to all parallel machines that can execute all tasks in the
schedule or at least the tasks specified by the cycle. As the cycle is propagating through
the pipeline, other processors can execute tasks in the FIFO queue.

3 6.2. Decomposition of The Inversion Algorithm

In analogy with assembly line processing, it would be advantageous to keep the com-
puting elements operating on a fixed task. Fixing the task in each processor eliminates the
reconfiguration the processors which would reduce the completion time. An example
where the reconfiguration could be eliminated is when cycles propagate through the pipe.
The PWP machine is very flexible and could programmed in many configurations.

The PWP machine has been designed with the CG in mind. It is also suitable for
problems that are computationally bound, and could be decomposed into tasks. If the
problem cannot be decomposed, then the pipeline configuration permits the increase in
throughput for more than one problem. The study and analysis of this problem can be
generalized to include iterartive algorithms as well. The main idea is to take advantage of
the parallelism that exists in the algorithm but not to a very low level. Low level parallel-
ism complicates the system and increases the cost, and increased speed may not justify the3 additional complexity.

To specify the inversion tasks, one must consider the equations defining the conju-
gate gradient. There are two basic algorithms: constrained and unconstrained. Both algo-
rithms invert the data and are different. Initially the unconstrained case is studied fol-
lowed by the constrained case.

1 6.2.1. Unconstrained Task Decomposition

Recall the 0 operator was defined in Equation (9) to be the sum of convolution of
matrices. This operation will be considered in this section for implementation on t1 t PWP
machine. The convolution in Equation (9) reduces to matrix product when the convolu-
tion operator is replaced by matrix product. This fact is exploited next in order to imple-
ment the 0 operation using algorithms that have already been developed for matrix pro-
duct. One algorithm that will be considered is obtained from [K3] denoted by Synchron-
ized Matrix Product algorithm. First an example with five layers (N. = 5) and four fre-3 quencies (Nf =4) will be considered, followed by the general case. Start with the
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3following equations (see Equation 9):

1 (A OX), =T 11 *X 1 +T 12 *X 2 +T 13 *X3 +T 1 4 *X 4 +T 15 *X 5  (10)

(AOX)2 = +T *X+T22 *X 2 +T23 *X 3 +T24 *X 4 +T *Xs (11)

3 (A OX) 3 =T 3 1 *XI+T 32 *X 2 +T 33 *X 3 +T34*X 4 +T 35 *X 5  (12)

(A OX) 4 =T 4 1 *X 1 +T 4 2 *X 2 +T 4 3 *X 3 +T44 *X 4 +T 4 5 *X 5  (13)

3 (AOX) 5 =T 5 1 *XI+T 52 *X 2 +T 53 *X 3 +T 54 *X 4 +T 55 *X 5  (14)

(A OX) 6 =T 6 1 *X 1 +T 62 *X 2 +T 63 *X 3 +T64 *X 4 +T 65 *X 5  (15)

(AOX)7 =T 7 1 *X 1 +T 72 *X 2 +T 73 *X 3 +T 74 *X 4 +T 75 *X 5  (16)

(A OX) 8 =T 8 1 *X 1 +T 82 *X 2 +T 83 *X 3 +T8 4 *X 4 +T8 5 *X 5  (17)

I The number of processors affects the performance to a great extent. As the number
of processors increase, the performance may or may not improve as was illustrated in the
previous example and will be observed in the conjugate gradient. If the number of proces-
sors is too low, the total inversion time may not be adequate. Further more, the speed will
depend on particular parameters of the inversion, for example, fixing the parameters will
give a number of processors that will be optimal or suboptimal for those parameters. If
any of these parameters change, then the machine may or may not have better perfor-
mance.3Equations (10) through (17) are represented by the following graph which can be
analyzed and scheduled.

Applying Hu's scheduling scheme with five processors, Figure 20 is the correspond-
ing Gantt diagram. The diagram illustrates many points which we discuss now. Observe
that with five processors, in the first eight time units all the processors perform the same
task namely convolution. The transfer during this time involves only the data and there
would be no task reconfiguration. The later seven time units perform only addition. The
assumption of equal task time fails when the processors switch from convolution to addi-
tion. Since the later tasks are only addition and take equal time to complete on data of the
same size, another time unit could be defined. This behavior is a characteristic of the con-
jugate gradient as illustrated by Figure 19. We can add a performance measure to be the
number of task switching per processor. This measure is related implicitly to the comple-
tion time. It should be included in the evaluation process when all factors affecting the
performance are considered in the scheduling process. An important second order con-3 sideration is the time it takes the data to go from a source node to a sink node and the wait-
ing times for synchronization if any.

Now we examine the completion time as a function of the number of processors used
to execute the conjugate gradient. Figure 21 is the completion time measure of the uncon-
strained conjugate gradient for four frequencies and five layers.

V

3 VII-27



II

+ + +. 4 + + + +

1+4 + + +

Figure 19: The algorithm graph of the unconstrained conjugate gradient
inversion for four frequencies (Nf = 4) and five layers (N, = 5).
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Figure 20: Gantt diagram for unconstrained conjugate gradient executed with
five processors (Nf = 4, N, = 5).

Figure 21 shows that the most improvement occurs around 10 processors for that par-
ticular case. 71 he slow decay in the completion time curve is attributed to the inherent
dependencies of the conjugate gradient. To obtain the actual expected inversion time, the
completion time is multiplied by the total number of iterations. The number of iterations
is a function of the sampling frequency in the spatial domain, that is, it depends on the
number of points in the measurement space. Our experiments with the conjugate gradient,
suggest that convergence occurs around 2000 iterations as illustrated in an earlier chapter.
We can estimate, based on the DSP chips, that each convolution task will take approxi-
mately 3 milliseconds, to give an estimate of 36 seconds for 2000 iterations.

The algorithm for the general case is similar to the graph in Figure 19. There would3 be 2 Nf trees each with N, leaves to give a total of 2 Nf A', terminal nodes (or leaves).

I
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Figure 21: Completion time of the convolution step of Equations (10)
through (19) for four frequencies and five layers.

Applying Hu's algorithm to the general conjugate gradient, yields, that if the number of
processors equal to 2 N/ N, then the completion time is four task times. This number of
processors is large and after the first task, almost half of the processors are idle and it rises
sharply afterward. A conservative system would be to use 2 N, processors which attain a
completion time of six time units.

The actual times for evaluating Equation (9) defining 0 were compiled for the con-
jugate gradient running on the Alliant FX/1. The Alliant times are the actual times it took
to evaluate both A OX and A * OX. The completion time of performing the same compu-
tations on the PWP machine are listed in Table 4 on the following page and compared
with the Alliant. The PWP performance was estimated when the number of CEs is eight
and Twenty.

Each CE is assumed to take 2 and 1 milliseconds for matrix convolution and matrix
addition respectively. The Alliant figures include the overhead increase due to its multi-
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U Table 4: Calculation times of A OX and A * OX on the Alliant FX/l Comput-
er compared with the expected time on the PWP machine.

I Inversion parameters Alliant FX/1 PWPEigh C~sTwenty CE.

Nf Nz Iterations Time (sec) Eight CEs Ten Cas
Time (sec) Ratio Time (sec) Ratio

5 4 100 932 2.8 332 0.8 1165

5 4 100 892 2.8 318 0.8 1115
10 4 100 1519 5.6 271 2.2 690
10 4 100 1509 5.6 269 2.2 6851 5 4 2048 18302 57 321 16 1143

9 4 2048 29222 114 256 45 649

I user environment. So the actual time could be slightly less. The PWP times did not
include the I/O transfer time, scheduling time, or other overhead. Thus the PWP times
should increase slightly. The improvement ratio would be around 1100 and 650 if these
slight variations are included.

* 7. Simulation of Computer Systems
As mentioned earlier, the performance depends on both the software and the

hardware of the computer. In this section, we describe a simulation tool of both aspects.
I Petri nets, a mathematical model of concurrent systems, have gained increased usage and

acceptance since their introduction in early 1960's, as a tool for modeling asynchronous
concurrent systems [P1]. They have been used to model program structures in [Al] and
hardware in [P1] as well as communication protocols in [Ml]. Torn [Ti] has extended the
notion of Petri nets to Simulation Graphs and used SIMULATION, a process-oriented
language, to code the graphs obtained from Petri nets. These are the components for
modeling and simulating the PWP machine.

A Petri Net is a mathematical model of systems. As with any model, the analysis of
the Petri net model can reveal important information about the system and may suggest
improvements as the model parameters are varied (for example, changing the bus lines of
the PWP machine, or task sequencing). A brief overview of Petri nets is presented follow-3 ing the excellent papers of Peterson [P1] and Torn [T 1].

7.1. Overview of Petri Nets3 A Petri Net is a four tuple structure (P, T, I, 0), where P is a set of places, T is a set
of transitions, I is an input function, and 0 is an output function. The set of places P and
the set of transitions are both non-empty, finite and disjoint. For each transition ti e T, the
input function I, defines the set of input places pi and the output function 0, defines the set
of output places pi.

I
I
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I
A graphical representation of a Petri net is more useful for observing the behavior of

modeled systems. To each Petri net, a Petri Net Graph can be constructed. The graph is
composed of circles 0 and bars I representing places and transitions respectively. The
input and output functions are represented by directed arcs from transitions (bars) to
places (circles) and from places to transitions respectively. For example, the following is
a Petri net of a single-queue single-processor system and its corresponding graph.

C=(P, T, 1,0)5 P=(P1 ,P 2 , P 3, P4) T={t 1 , t 2 , t 2 , t4}
(t)= ( ) 0(t)= (P 0

1(t2) = {P1,P 2) 0(t 2 )= {P3)
(t3)= (P 3 ) 0(3)= (P2, P4)

1(4) =P4) 0 04)= ( )

Figure 22. Petri net structure of a single-queue single-processor computer
system.

I Tt

I 5 t2

I
* t3

-'t4

Figure 23. Petri net graph representation corresponding to the structure in
Figure 22 above.

3 The example illustrated in Figure 5 is useful in modeling and simulating a queuing
system. The events could represent the following sequence of operations [Pl]: (1) Tasks3 enter the queue, (2) tasks start to execute, (3) tasks complete execution, and (4) tasks leave

I
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the queue. Note that events (1) through (4) are represented by transitions t1, t2, t3 and t4
respectively. The places of interest are: (a) A task on the list, (b) an idle processor, (c) a
task being processed, and (d) a task leaves the queue. These places are represented by
P1,P2,P3 andp 4 .

An important feature of Petri nets is their hierarchical aspect of modeling a system.
The hierarchical nature of Petri nets permits modeling from coarse to fine levels depend-
ing on the desired detail. For example, concurrent processes can be expressed in terms of
the single-server (main unit) multiple-processor queue as shown in Figure 22.I

T I

p3 p4 5 P

-- t4

Figure 24. Hierarchical property of a Petri net used to model concurrent
tasks.

Finally, we introduce two concepts [PI] of Petri nets to derive a model net for the
multiple bus lines utilized by the PWP machine. The first is that of a Token which is an
element of a Petri net assigned to places and is represented by * on the corresponding
graph. Tokens are passed among the places when a given transition is fired. The firing of
a transition marks an event which causes the tokens to move from the input places to the
output places. The execution of a Petri net is determined by the number and distribution
of tokens in the net.

The second concept of a Petri net is that of an inhibitor arc. An inhibitor arc from a
place pi to a transition tj enables the transition tj if there are no tokens in the place pi.
Inhibitor arcs are denoted by a small circle 0 in place of the arrow head of the input or
output functions, and they extend the modeling power of a Petri net to include priorities
and mutual exclusion of events. Figure 25 illustrates token passing, transition firing, inhi-
bitor arcs and it is assumed that the net is part of a larger system.

V
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I

pI p2 p3 PI p2 p3

I 0

Yp4 
Yp4

*2 2e

Ce) Cb)

I p p2 p3  pI p2 p3

* 
P4 9 p4

*__2 _ t2

cc) (d)

Figure 25. (a) transition t h cannot fire since there is no token in place p2 o (b)
transition t fires when there are tokens in all it's input places, and which in

turn moves the tokens into place P4. (c) transition b cannot fire since there
is token and an inhibitor arc in place P2. (d) transition th fires since there is

y no token in place P 2 and each of the placespI andP 2 has a token.

As mentioned earlier, a Petri net is derived to model the data transfer between the5 processors. The main unit processes the 110 request and the communication protocol
between any computing elements. The actual transfer occurs along any of the available
data busses. Figure 8 illustrates the I/0 management done by the main unit on three bus3 lines (A, B, and C of Figure 3). Transition N4 has higher priority than t3 and t6 as dictated
by the inhibitor arcs shown. The structure of the net is that of a single server (main unit)
multiple processors (the bus lines) with priority. The places P4 , P5 and P6 are the three
bus lines that transfer the data when enabled. The model shows that places (where the
transfer occurs) P4, p5 and P6 will be occupied in priority as well. The overall effect is
that, bus A will be used if it is available (p 4), bus B (p5 ) will be used only if bus A is
busy, and bus C (6) will be used only if bus A and B are busy. If all three busses are
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busy, then the transfer requests are placed in a queue at the main unit.

I t1

I T2 I22 17 p
I

I P5

t 6 1t 5

p67

-E:
Figure 26. Petri net model of the multiple bus architecture (three busses

here).

I
I
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i
8. Summary of Chapter VII

In this chapter, a parallel machine to solve iterartive problems has been designed. In
particular, the conjugate gradient inversion algorithms.

The first sections discussed the size of the inversion problem. An estimate of the
memory requirement was obtained in order to evaluate the feasibility of the PWP
machine. The requirement depended on the inversion problem and it varied linearly in
each of the inversion parameters to give an overall requirement of the fourth order. Even
with this requirement, the size was reasonable for typical problems encountered in NDE.
If the problem of interest is large relative to the available memory, then the problem must
be partitioned on the PWP machine. This particular problem is inherent in all computers
when the memory requirement is larger than the memory resources.

An architecture for pipeline configuration was discussed. We also discussed how to
improve the convergence using the pipeline architecture. The pipeline was composed of
computational layers with several computing elements in each. The task sequencing

Sscheme can be used to determine the number of computing elements for each layer in the
pipe.

A parallel machine utilizing DSP chips was designed and with the multiple bus archi-
tecture, the I/O problems can be reduced. The overall speed of the system depends on the
speed of the individual DSP chips used to integrate the system. Furthermore, as more
advanced DSP chips become available, the system could be upgraded with minimal
changes.

In addition, we considered a scheduling scheme to assign tasks in order to execute
the conjugate gradient. The sequencing scheme was applied to our inversion algorithm,
and we obtained estimates of the completion times. The completion time per iteration was
six time units for 2 N. computing elements, five for Nf N, processors and four units for
2 Nf N. The cost of the computing elements becomes very high when the desired com-
pletion time is four units as illustrated in Figure 21. When cost, scheduling and speed are
considered, 2 N, processors would be the trade off number of processors to use.3 Having chosen a number of processors for a particular inversion problem, the
scheduling scheme discussed minimizes the completion time of an inversion problem
given a fixed number of processors. The completion time for the new problem depends on
its parameters. In Table 4 on page 30, we compared the expected performance of the PWP
machine to the actual Alliant FX/1 performance. A speed up factor on the order of 1100 is
noted for the considered cases.

Finally, a simualtion tool for concurrent systems was presented. By simulating the
PWP machine architecture, we can evaluate its performance and improve the design. The3 goal of the simulation is to minimize the completion time and cost.

I
I
I
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The original algorithm representing the conjugate gradient minimization procedure is

not preferred for a pipelined architecture. The reason for that is caused by the internal
looping around one of the intermediate steps. Since that problem affects greatly the
efficiency of the architecture, we had to find a way to deal with this obstacle. Many solu-
tions had to be examined, from software manipulations to changing the structure of the
whole algorithm. A new version of the conjugate gradient algorithm for constrained prob-
lems is presented, the correctness of this version and its improved efficiency were sup-
ported by theoretical, as well as, numerical means.

The following function is to be minimized

F(X)=- IY-A OX1 2.
2

Start with an initialization of an iteration counter k, k = 1.

Stepl. Select a point X 1 in S. Compute
R1I= Y -A OX 1 , Q 1 = A* OR1I = -F'(X 1), gi I = gi(X 1) (i = 1,... 2N). (a)

If Q I = 0, stop; algorithm terminates.
Else, let I be the set of indices, i, such that gi I = 0 (the 'active set'). Go to Step 2.

Step2. If/ is empty, i.e., no active constraints, let H be the identity matrix. Go to Step 3.
Else, let H be the nonnegative symmetric matrix that annihilates the vectors,
Wi, i C= .

IfH = 0 go to Step 5, with X 1 playing the role of X 2.
Else go to Step 3.

I Step3. CG-subroutine. Set

P 1 = Q =HQ1 . (b)
I11 112

S1 =A OPI, aI = s (c)

{WTP1, i I

0, i() I

I X2 =X 1 +aP 1 , gj,2=gjl+aljl (j=l, ... ,2.N) (e)

If for some jd I, gj. 2 > O, then Set k = I and go Step 4. (f)

I Else if k = N then

3 R 2 =R 1 -a, S 1, Q 2 =HA* OR 2 , k= I andgoStepS. (g)
Else

3 Replace X I by X 2, and k by k + I and go Step 1. (h)

I
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I-- Step 4.Scale back to the boundary of the feasible region and update the active set.
Let J be all indices j I, such that gj, 2 - 0. Let aI be the smallest of the ratios3 gj 1

aj, =- , gj e ./j I
Reset

XI =XI +il P 1 ,R, =Y-AoX1,

QI =A * OR, =-F'(X1 ), gil =gjl+all jl, (j= 1,... 2N).

Update the active set by adjoining to I all indices jd I, and gj =0. Go to Step 2.

I Step 5. If Q 2 = 0, stop; algorithm is terminated.
Else select shortest V of the form

V Q2 - 'Wi , (i I withk i >-O)(i

If V = ,stop; Kuhn-Tucker conditions are satisfied, and algorithm is terminated at
minimum point of F on S.
Else, choose a > 0, such that

gj.2 +aVTWj<_0 (jl ... 2N), F(X2 +aV)<F(X2 ). J)
Restart the algorithm at Step I with X1 = X 2 + a V as the initial point.

I
Theoretical Note : Comparing equation (a) and (g) we find that R 1 and Q 1 are the same
as R 2 and Q2, if X 1 is playing the role ofX 2 :
R= Y -A OX 1 from (a), now substitute X1 by the value of X 2 .

R 1 =Y-A O(XI+a 1 P1 )

But A OP=S1 - R 1 =(prev.)R1 -aISI which is the same expression suggested by
equation (g).
On the other hand, in equation (a) we have

Q 1 
= A 0 (Y - A OX 1) substitute X 2 for X 1

=A* O(Y-A O(XI -aP 1 ))

=A* O(Y-A OXI -alA OP1 )

=A" O(RI -a S)

=A* OR 2

which is the same value of Q 2 suggested by equation (g).
Since equations (a) and (g) perform the same computation, equation (g) can be deleted as
verified above. The redundancy appears when step I follows step 3 only. Therefore,3 equation (g) is only needed when step 3 requests step 5 to be executed.

I
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Numerical Example.

The following is a numerical example to demonstrate the correctness of the CG-
algorithm version without looping in step 3 and after rearranging step 3 by itself in order
not to repeat same computations in different steps, this version is attractive and suitable
for the hardware parallelism of this algorithm.

Solving the least square problem

I F=1 IIA X -YI
I where

Then the solution of the normal equation

I A.+X=[ :3 A':[3]

is X = [0]. The outer-normal vectors to the two-dimensional constraint region (which is

a unit square) are
W, =[O , 0 2[f] W3=1 , W4=[._0].

Start the algorithm with k = 1 and with X1 = [0]. Then

gl(X 1)=O,g2 (Xl)=0,g3(X)=-1,g4 (X 1)=-I. Hence, the active index set is I =
(1,2), which means that the H matrix is the null-matrix. The initial residual gradient vec-
tors are, respectively, 

R 1 =- , QI =A* R,

3 Enter 5: Minimize V with nonnegative X1, X2 , where,

V* v[3] _[-I[ _ X2 [Yi 3+J{lx]

Hence, X =X=, and V []. Next consider

gI-.,+a[3 1[-1] -3a 0- a >0

g2, 1+a[3 1[O] -- a 0-,a >0

93.1+a[3 1]i -l+3a:50-4a 51301

I
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I 94,1+a[3 1][ =-Il+a<0-.a5l

Thus a = 0.1, and we leave step 5 with-=[0] +o.1[][ 3 [g,]

I Enter step 1 with this value ofX 1 and compute

2 1 0] [0.1 =[0.R= 0 _ 1 0 • -0.3

I 1 1A*R , 0r61 = [026J

I 1 =-0.3, g 2 =-0.1, g3 =-0.7, g 4 =-0.9,

S=Oorempty, H=12.

Enter step 3

.4.3

s1 [1~o21 [26 a 4.76 =0.3

I1 =WT P, =[_l 0][ 026 =-2

12. 1 = W 1 P I=[0 -1 [026 -0.613, .1 ,- 31 oI 110o 6] 2
I /4 , 1 -w P1 =[0 1][026] =0.6

X2=0. 1] +0. 6 = 0 0.28I
1g1.2 =g 1, 1 +a, 11.1 =-0.9

g3.2 = g 31 + a, 13.1 =-O.1

g4,2 = g4.1 +a, 14.1 =-0.72

I
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3 k=l#N

k=k+1=2;Xl:=X2 and go to step 1

Enter step 1

091 [ -0.181R,- -[1J 0002 -0.9
1 0.28 .0Q Ar* 11 : r -- [--0,18e'-m' '-L~ ~1 :L-.1 8

3 g1 =-0.9, g2 =-0.28, g 3 =-0.1, g 4 =--0.72

I= orempty, H=12 .

I Enter step 3

P1 =HQ 1 =Ql= E0.02]
[''l .02 ] = 6[ I = - 0. 1 61 0.0264 -1.25

S1iJ 1 0.02]

I l~11.= W T P, =[1 0][008 =0.02

12.1= W21 P I=0 -1][.00128] =0.18

I [P= 11 =0.02 0
I 14.1=W T  Pi 0 .1]_j'O8]  =-0. 18

0.21 +1.25 0.021 - [0.9251

g 1.2 =g1, 1 + a 1 1,1 =-0.925

g2,2 =g2,1 +a1 I2,1 =-0.055

I g3.2 =g3. 1 +a 1 13.1 =-0.075

84,2 =84,1 +a 1 4.1 =-0.945

k = N =2 then

V k :=-1

I
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3 r 0.02]R 2 =R 1 -a$ 1S= [-0.925

Q2 =A*R2 = 1 1 1] 0.021[.1
11 0 0.02

l1.751 1*

and go to step 5

Enter5-- V = Q2

Choose a > 0 such that

g g1, 1 + a[0. 17 0.02][01= -- 925 -0.17 a:50 -4a > 0
1 11

g 2,1 + a [0. 17 0.02]1[ 0] =--0.055 -0.022 a :50 - a > 0

g 3 1 +a [0.17 0.02]1I =--0075+0.17 a <0 -a<0.44

Sg4,1 +a [0.17 0.02][01 =-0.94 5 +0.02 a <0 -- a 5 47.25

Thus a = 0.1, and we leave step 5 with
0.925 0.171 f 0.942xl = 0.055] + 0.1 [0.02J L [0.0571 "

I Enter step 1 with this value of X1 and compute
1 0.057 1.058

Ri=[0]- 1 0 94 -0.942

OOjh 1.058I Q1=Ao r 1= [ , %1_ro.2] [g7
g1 =-0.942, g2 =-0.057, g 3 =-0.058, g4 =-0.943

I= or empty, H =12.

Enter step 3
*P H Q I = 0.117)

0. 117 0.117 0.0137
I0.001 0.117 0.0413

II 1,!'0 .1 1'7 .

'1.1 = W0 P 1 =[-1 0.001] =--0.117

I
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I = WTp I = [0 _l .117]=100.001 ='-0.001
131=W Pl=[1 ]0J.17 =0.117

T p~ , 1o.117]
14.1a=-W4 t 1 0~.001] =-0.001

x- [0.942] +0 0.1171 = r0.9808]

X2 = 10.057J •0.001J L0.0573J

g 1 ,2 = g 1 .1 +aI 11,1 =--0.9811

g2 2 =g 2.1 +a1 12.1 =-0.0573

g 3 ,2 =g 3 .1 +a, 13,1 =-0.0194

g4.2 =g 4.1 +a 1 14.1 =-0.9427

I k =I *N -

k=k+ 1 =2,X1 :=X 2 ,andgo to step I

Enter step 1 :i R1 =Y-A X .1

1019.
1 -0.o38 0 .001

QI=A*Rl=[ll1 |-0.98 -=
0J [1.019 -0.o38

I Q
QI=0

I
Stop with solution:

=0.98081
=0.0573J

I
The derived version of the conjugate gradient algorithm for constrained problems has

been proven to be efficient and practical through theoretical reasoning and numerical sup-
port. The general pipeline architecture for the algorithm with optimal efficient steps could3 be implemented.

I
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3 1. INTRODUCTION

Digital signal processing (DSP) chips are being used in an increasing number of
applications. An obvious application of DSP's has been around for a while: real-time
processing (e.g. FFT's and filters) of digital data that comes from an analog-digital (A/D)
converter. For processing A/D data in this manner, the DSP need only operate on 16-bit
(or less) precise fixed-point data, since common A/D conveners have 8-16 bits of preci-
sion, but other uses for DSP chips exist, and often require features beyond these fixed-
point DSP's. Today's DSP chip can be used as powerful microprocessor, complete with
I/O and interrupt facilities, as well as a number cruncher for fixed or floating point
numbers. The state-of-the-art in DSP chips is steadily changing, making possible many
computing preblems that were not possible only a short while ago. In our parallel
machine design, we can fully exploit the dynamic DSP market, since the actual DSP used
in the machine can be any of the advanced chips on the market. The machine is thus
allowed to "grow" right along with the DSP market.

Most DSP's today are based on a pipeline architecture that typically includes multi-
ple data paths internally and two or more data paths externally. The one-time limitation
of a small addressable memory space no longer exists in recent DSP designs, with many
DSP's being capable of directly addressing 16 megawords of RAM. Some DSP's con-
tain an on-chip DMA controller so that The addressable memory can be loaded or off-
loaded as the number crunching continues. Modem VLSI processors can often process
data faster than today's "standard" memory chips can be accessed, so DSP's often have

t provisions for "slow" memory interfacing.

A recent trend has been to use DSP chips for applications that are more demanding
in some ways, such as FFT's and convolutions of floating point (single or even double
precision) arrays. We studied DSP chips in the latter context for this project: we investi-
gated DSP's as number-crunchers for a scientific computing algorithm (conjugate gra-
dient). This section of the report presents some of the DSP chips reviewed and suggests
which of them would be useful for implementing the "conjugate gradient machine."

I 1 a. The DSP Market

DSP chips have been on the market for many years, but those available prior to
about 1985 had too many limitations to be considered for many serious computing appli-
cations. For example, the AT&T WE-DSP32 was available in 1984, but could only
directly address 56 kilowords of external memory, not enough for a large array of
numbers. A more recent generation, the WE-DSP32C, can address 16 megawords, has a
higher clock frequency, lower power requirements, has a hardware interrupt facility, and
has many other improved features. Common today are DSP chips that have 32-bit wide
data paths, and quickly operate on 16-bit fixed point numbers or 32-bit floating point
numbers. DSP chips that operate directly on 64-bit double precision numbers have been
slow to emerge, and at the time of this writing, only a couple exist. Double precision
arithmetic can be done using single-precision DSP's, but it takes more time.
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The major manufacturers of DSP chips (probably AT&T, Motorola, and
Texas Instruments if we restrict the discussion to floating point chips) are on a fast-paced
race to make the best DSP chip and claim a big section of the market. Texas Instruments
has already announced a fourth generation in thier DSP family -- the third generation per-
forms floating point math more than adequately for our machine design. Given the
changing market, it makes sense to stick to fundamental designs that do not rely heavily
on manufacturer-dependent features of a given DSP chip, and concentrating study on
vendors that have shown a strong commitment to improving DSP technology.I
1 b. A Look at the Available DSP Chips

Texas Instruments was one of the first serious manufacturers of DSP chips. With
the Texas Instruments TMS310 DSP chip, modem, voice, and music product designers
were armed with a new tool. Although TI set many industry standards in low-precision
fixed point DSP chips, the same trend is not necessarily true in the late-generation DSP's:
AT&T, Motorola, NEC, and several other manufacturers are presently producing 32-bit
floating point DSP chips. The discussion in this report will concentrate on the TI,
AT&T, and Motorola chips.

The three manufacturers use similar strategy in data flow: avoid bottlenecks by pro-
viding multiple paths for data. The prevalent emerging design is pipeline in nature, with
various "DSP building blocks" along the pipe. 1 The "Harvard architecture" is most
common (separate data and instruction busses). Ground-breaking prices can be quite
high (e.g. $1300. each for a small quantity of TMS320C30, fall 1988), but as with any
new technology, the prices drop rapidly as new products emerge. TI expects the3 TMS320C30 to be about $100. by 1990 (volume pricing). The following table summar-
izes some of the available DSP chips from TI and other manufacturers.

DSP Chips
Manufacturer Chip Description
Analog Devices ADSP-2100 Fixed-point DSP that is reported to do a 1024-pointcomplex F~ napproximately 66ms.

Analog Devices ADSP-3200 Family of floating-point components for DSP. Not a

single-chip solution like most of the other products
listed here. Can handle double presicion data types.

Texas Instruments TMS32010 T's first-generation DSP design: a fixed-point DSP
that has found its way into modem, audio, and other3 16-bit digital circuits.

i Often, the architecture seems more like a bus-connected architecture than a pipeline, howev-
er, multiple busses and multiple "DSP building blocks" means that several operations can be go-
ing on at once. The performance of such an architecture resembles a pipeline architecture.

I
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II DSP Chips
Manufacturer Chip Description3Texas Instruments TMS32020 T's second-generation DSP design. This DSP is too

limited for use in our proposed conjugate gradient
algorithm. The biggest limitations are its 64k address
space and lack of floating-point operations.

Texas Instruments TMS320C30 Tl's third-generation DSP design. The third-
generation chip operates on floating point data,

I addresses 16M words of memory, and adds many
new features.

Texas Instruments TMS320C40 TI's fourth-generation DSP design. Announced, but
no technical information available at this time.

Motorola MC56000 RISC architecture DSP chip supporting fixed-point
operations up to 32-bits wide. Harvard architecture,
with two separate busses: a data bus and a program
bus. Both busses can interface directly to memory,
but typically use Motorola's special "Cache Memory
Management Unit" (CMMU) interface chip.

Motorola MC88000 RISC architecture DSP chip that supports single and
double precision operations, directly addresses up to
one gigaword of data and one gigaword of instruc-
tion; typically requires three chips (DSP and 2 cache
management interface chips). Harvard architecture,

i with two separate busses as in the MC56000 design.

Ideal chip for an application requiring limited DSP
combined with some control (discussed in Electronic
Design, April 28, 1988, p.3 9 ). Preliminary informa-
tion; market status unknown.

Motorola MC96000 Motorola's floating point extension of the MC56000.

26.7 MHz RISC architecture that is reported to do a
1024-point complex FFT in under 2ms. Handles sin-

gle and single-extended precision operations
(extended numbers have a 32-bit mantissa and 11-bit
exponent). The chip directly addresses up to 4 giga-
words of memory, but typically interfaced to memory
via two special CMMU chips. Two separate memory
spaces internally; ideal for complex numbers.

AT&T WE-DSP32 32-bit floating point DSP. External memory limited
to 56k words.

AT&T WE-DSP32C 32-bit DSP for 16- and 24-bit integer operations and
32-bit floating point operations. 32-bit data bus and
24-bit (16M) address bus. Used in Pixel Machines'
PXM 900 Series Graphics Workstations.

OKI MSM6992 22-bit floating point (and 16-bit fixed point) single
chip DSP. lOOns clock cycle; 2pm silicon gate
CMOS; 64k word data space and 64k word program
space. Slightly enhanced version, MSM699210, has
more internal memory.

I
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g DSP Chips

I Manufacturer Chip Description
NEC ILPD77230 24- and 32-bit floating point DSP. 150ns instruction

cycle; up to 13.4 MFLOPSI
2. SELECTION OF A DSP FOR OUR APPLICATION

Our "parallel conjugate gradient machine" operates quickly by providing many
computing elements, each capable of performing a small part of the conjugate gradient
task. We assume that each computing element is composed primarily of a DSP and
some memory. An "executive computing element," perhaps formed of a microproces-
sor rather than a DSP, is given the tasks of communicating, transmitting data, and
scheduling the computing elements.

A few assumptions are necessary to insure that the machine operates efficiently.
We assume that the problem assigned to the machine is highly computational, and not1/0 bound, as our machine does little to improve I/0 performance. We also assume that
a DSP can spend a significant amount of time (compared to data transfer time) operating
on local data. This assumption implies that each DSP computing element is equipped
with a sufficient amount of local memory to hold the required data. These assumptions
do not severely restrict the usefulness of the machine (see chapter VII); we are still able
to address a very wide range of problems.

It has been predicted that in the near future we will see a 60 to 70% peformance
increase per year in state-of-the art machines [El]. New machines, such as the one we
propose, should be flexible, both in terms of architecture and the technology used to
build the machine. A design that is independent of a specific device technology allows
the system to be upgraded to take advantage of the new technology. This consideration
bears significance on the selection of a DSP: we prefer to select a DSP that is fairly
general-purpose, but represents the leading edge of design.

£ 2 a. Important Features

Among the top concerns in choosing a particular floating point DSP is the width of
the address bus. A DSP that has a small memory space proves to be too severely lim-
ited; we require that each computing element can address enough data to hold a large
array of numbers. We feel that a 16-bit (64k) wide address bus is too small, and that a
32-bit (4G) is probably more than we require (the extra space does not cause any partic-
ular problems). Many DSP chips have a 24-bit (16M) address bus, which is probably
about right for our application.

We also preclude the use of fixed-point DSP chips. Fixed-only DSP's would be
useful only if the algorithm were changed and scaled at each stage of the computation
[KI] Double precision operations might simplify some steps, but we assume that we can
implement the algorithm in single precision. If double precision is required, those
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I_ operations can be implemented in software. The DSP's that we consider are all 32-bit
designs. This data size seems to be a rooted-in standard, and the data size determines3 the appropriate bus widths and data paths.

Other features assist in interfacing the DSP with the rest of the hardware of the
machine. For example, Direct Memory Access (DMA) allows the DSP to operate some-
what independently of the memory interface, and is considered an important feature, but
is not essential. Our design does much data transfer, and it would probably improve
overall performance if each DSP could be freed from the mundane task of moving data
from here to there. It is important to consider the availability of software and develop-
ment tools for the DSP. We require at least a C, or other high-level compiler, and good
technical support from the manufacturer. Fortunately, this has become a standard in the
emerging DSP's. We will not concern ourselves with cost at this point for two reasons:
we believe the application to be fairly cost-insensitive, and the DSP's studied are new,
so their prices are constantly dropping.

Some important considerations are not addressed in this chapter but are covered in
Chapter VII: bus design for sufficient bandwidth, ,mount and speed of local memory,
number of computing elements, communication protocol, and implementation of the
algorithm. We can compare DSP's on several different grounds: available features,
speed of execution of particular code, cost, reputation of vendor (will it be upgraded?),
and design considerations (how well does it fit into our machine?). The speed can be
compared by looking at the speed of a particular bit of software, such as a complex FFT
2 , as we know that this type of computation will be present in the algorithm. Such a
comparison is of limited use since all of the considered DSP's execute such an algo-
rithm in roughly the same amount of time, and the benchmark is very dependent on the
particular implementation. Design considerations and available features, such as howSthe chip interfaces with memory, are more significant comparisons.

2 b. Comparison of Our Favorite Three

The three top choices for DSP's emerged early in our study; many of the available
DSP's were not useful in our design because of limitations discussed above. We think
that any of the three DSP's discussed in this section, Texas Instrument's TMS-320C30,
AT&T's WE-DSP32C, and Motorola's MC96000, could be used in our design. We dis-
cuss tradeoffs involved when choosing one over another. Table I outlines some
significant features of the three DSP chips.5 Te Motorola chip has two internal data spaces that make the chip ideal for execut-
ing code that operates on complex data. Since the Motorola chip has more internal data
paths, it is a reasonable assumption that many problems could be executed more rapidly
than on the other two DSP's. However, the standard design using the MC96000 uses

2 Note that board-level products have been reported to do a 1024-pt complex FFT in less than a
millisecond, for example, the Viper 8704, reported on p.22 of Comtputer Design: News Ediion,
January 16, 1989. This benchmark sheds light on the power of modem DSP chips: most of the
single-chip DSP's discussed here do the same computation in approximately 2 ms.

I
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TMS-320C30 WE-DSP32C MC96000
Harvard architecture Yes No Yes
Data width 32 bits 32 bits 32 bits
Address width 24 bits 24 bits 32 bits

(16M) (16M) (4G)
Clock speed 33.33M 40MHz, 50MHz 26.7MHz
Peak FLOPS 33M 25M 40M
Instructions/second 16.7M 12.5M 13.33M
1024-pt FFT time 1.67ms ? <2ms
C Compiler Yes Yes Yes
DMA controller On-chip On-chip for serial Two On-chip

and parallel ports
Technology 1.011m CMOS 0.75gm CMOS RISC
Internal RAM 2k words lk words 1.5k words
Internal ROM 4k words 2k words lk words

Instruction Cache 64 words No No
Serial port two;8Mbit/s 16Mbit/s sync. and async.
Parallel port two one; 16-bit 32-bit interface
Interrupts 12;4 general purpose 4 internal; 2 external 3 external
Registers 28 22 10 96-bit
Available Now Now Early 1989

two extra CMMU IC's to interface to memory, probably making the hardware more
I complex and costly.

All three chips have available C compilers for code development. The three DSP's
have approximately the same number of registers available for accumulating results; the
Motorola chip has fewer registers, but its registers can hold more data (96 bits). From
the programmer's point of view, the three choices are probably almost identical. Most
of the code development would be in C, and a small portion of the code would probably
be done in assembly. For the assembly programming, a slight advantage night go to
TI's and AT&T's DSP's due to flexibility of having a large number of smaller-sized
registers and a simpler internal data flow. The instruction cache of the TI DSP would
likely provide a speed-up in execution since each DSP (by the nature of the algorithm)
executes the same code over and over. The lack of a cache in the MC96000 is probably
made up for by its multiple internal busses, separate address spaces, and high degree of
parallelism at the data transfer level.

Interface to memory seems most flexible in the TMS320C30. The TMS320C30
has two parallel ports and two serial ports for peripheral I/O and a general-purpose
DMA controller for concurrent computation and data transfer. The chip has sufficient
interrupt facilities for synchronizing to external events. All three DSP's considered are3 capable of addressing plenty of external memory; the 4 gigaword address space of the
MC96000 is probably an insignificant advantage over the other two chips.

Overall, the TMS320C30 seems the best choice for our intended application. It
executes instructions more rapidly than the other two, and seems to execute common

3 VIII-6

I I o



I
I problems (e.g. 1024-pt complex FFT) at least as rapidly as the other two DSP's. Texas

Instruments has been in the DSP business at least as long as anybody else, and has
shown their commitment by continually improving on their designs. It appears that the
next generation, the TMS320C40, is already available and might provide an immediate
performance improvement. The cost of the TI part, though initially expensive ($1300.)
will probably drop to $100. over the next two years.

3 2 c. Putting It All Together

Using the TMS320C30 as a benchmark, we can estimate the cost of the most costly3 hardware components of our proposed machine. We can not take into account develop-
ment time, and we must estimate the cost of much of the hardware since the machine
has not yet been designed. Let us assume that we will have one megaword of memory

Son each of the boards composing the system. The cost of the memory is a big part of the
total cost since RAM chips are expensive as of December 1988; here we estimate the
cost of RAM on today's market. TMS320C30 is capable of 60-ns instruction cycles,
which is faster than the memory quoted below. Thus, to make full use of the chip, one
could interleave, cache, or get (more expensive) faster RAM. Alternatively, the perfor-
mance could be matched to the slow RAM via wait states. The price of the DSP quoted
is expected to be $100. in volume by 1990. Table 2 estimates the cost of one comput-
ing element of our proposed machine. The estimated costs include only certain parts
and exclude construction cost, miscellaneous chips, "central CPU" cost, and of course
R&D. Note that a year ago, the 80ns RAM (Imeg by 36 bits) would have been about
$432. If indeed the DSP were to come down to $100 and memory costs were to fall
back to their all-time low value, the hardware cost would change drastically
($632/board). We emphasize that the hardware cost is not the most significant con-
sideration since for our proposed applications, the market is fairly cost-insensitive [S I],3 and in any case, the cost is not outrageous.

Item Unit ($) Total ($)

DSP Chip TMS320C30 1300. 1300.

3 80nS IMbit RAM chip 32. 1152.

Circuit board manufacture, much interface, 1000.
PIA, TTL, buffer chips, and support circui-
try; estimate

I Total MINIMUM cost per board, estimated, 3452.
based on today's market

I Total MINIMUM cost, 50 boards 172,600.

I
3 VIlII-7



I

1 3. BIBLIOGRAPHY

3 [Al] AT&T Microelectronics, DSP data book, "WE-DSP32C Digital Signal Proces-
sor," 1988.

[A2] Analog Devices, data manuals, "DSP Products Databook: DSP Microprocessors,
Microcoded Support Components, Floating Point Components, Fixed Point Com-
ponents," 1987.

[El] "Computer System Architecture," Electronic Design, Vol. 37, No. 1, January
12, 1989, p.5 1.

[KI] "Computer Aided Implementation of Complex Algorithms on DSP's Using
Automatic Scaling," 1CASSP, Korina Kassapoglou and Martin Vetterli, 1987,
p.1027.

[MI] Motorola, Inc, Motorola Literature Distribution, "BR282 and BR505, 56-bit Gen-
i eral Purpose Digital Signal Processor," 1986.

[S1] Sabbagh Associates, Inc., market study for nondestructive evaluatio.- nardware as
part of Phase II SBIR project with the Department of Energy, contract number
DE-AC02-83ER80096, 1986.

[2] Texas Instruments, Inc, "Second-Generation TMS320 User's Guide," Houston,
'TX, 1987.

[T3] Texas Instruments, Inc, "Third-Generation TMS320 User's Guide," Houston,I TX, 1988.

8,I
I

I",I
I
I'I'
3 VIU-8



5 CHAPTER IX

IMAGE PROCESSING3 OF EDDY CURRENT DATA
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1. Overview

In this chapter we summarize the processing developed for the analysis of eddy current
images. One the most useful scheme was the segmentation of images used to obtain the
classifier parameters in Chapter VII. In addition, the statistical properties of the flaw and back-
ground regions were used to obtain an estimate of the regularization parameter which precondi-

i tions the inversion data.

2. Image Processing for Flaw Detection
In this section, applicable techniques of image processing will be explored in order to iso-

late flaw regions, and study the statistical properties of the flaws and background. The terminol-
ogy adopted in computer vision will be used here. Laboratory measurements will be denoted by

Iimages, and each sample by a pixel. The data collected from an experiment is quantized in the
spatial domain, with resolution bounded by the precision of the data acquisition system.

Initially, laboratory eddy current measurements are represented by images. The images
1have eight bits of resolution convened linearly according to:

I -in 0 [d(x, y)-mol (1)

where d(x,y)= is the pixel intensity at (x,-y), m, =max(d(x, y)), mo=minfd(x, y)), and
I (x, y) is the resulting image. Variations to this conversion rule produce different visual results.
Different conversion schemes have not been investigated, in particular non-linear conversions
such as Logarithmic scaling.

In chapter VI, the statistical properties of the flaw and background regions were needed.
The process of separating the flaws from the background is known in computer vision area by3 segmentation. Segmentation is the process of identifying homogeneous regions of the image, as
covered in the next section.

2.1. Segmentation of Eddy Current Measurements

Results of segmentation will be used to estimate the statistical properties of the flaws and
background, and to obtain an estimate of the flaw support for inversion. Segmentation differs
from statistical detection since it does not yield statistics about the flaw, and there does not exist
an adequate measure of quality. Most segmentation results are evaluated visually, and various
segmentors yield different results when applied to the same class of images. Hence, for a given
class of images there may exist a "good" segmentor. The results, if interpreted from detection
point of view, have a high false alarm error rate. Specifically, segmentation may not detect the
absence of a flaw.

In our case, segmentation will be used as a preprocessing step, with the possibility of using
the results for inversion. The main utility of the segmentation is to obtain data that gives
sufficient characteristics about the classes. Segmenting large number of measurements would
reduce the estimation error of the statistical parameters of the flaws and background regions.

The segmentation algorithm devised here for the purpose of flaw region separation is based
on the fact that the amplitude response of eddy current to flaws are higher than those to the
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I
background. The segmentor devised here, seems to perform well on laboratory data for almost
all types of experimental arrangements. A threshold is selected from the histogram of the image.
Since the flaw regions are those at the high end of the range axis, the threshold is selected with3 the following method.

Suppose that h (i), (i = 0, 1, .... n) is the histogram of an image. Denote the first moment
by gil, and the second moment by i2. The threshold is selected at:

T = g, + 0.5 F92 (2)

3 where
n n3= ih(i) and g2 = Y i2h(i)-gt2 . (3)

i=0 i=0

The results of segmenting the satin weave is shown in Figure 1. The reader may wish to refer to
the FOURTH QUARTERLY REPORT of this contract for more segmentation results of eddy
current data.

IN i) i) N

l Figure 1: Segmantation of laboratory data of the drilled satin weave sample. (a)

Original real part. (b) Original Imaginary part. (c) Segmented real part. (d) Seg-
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32.2. Planar Filtering of Eddy Current Images

Some measurements made in the laboratory reveal a planar offset that made segmentation
of the images difficult. Segmentation could be improved if the planar offset is removed from the
data. This preprocessing step is necessary because the planar offset is due to equipment setup
and is not a characteristic of eddy currents.

Let D (x,y) be the measurement data or image over rectangular grid in the measurement
plane. In addition, this offset may yield incorrect inversion results. { (x,y): 0 < x < M, 0 < y < N
}. The form of the planar offset over the grid ( (x,y): 0:_ x < M, 0:5 y < N ) is given by:

z=ax+by+c. (4)

I The problem now is to determine a, b, and c such that the least square error is minimized, where
the least square error is defined by:

S, [D(x,y)-(ax+by+c)]2 , (5)3 (z,Y)E (JXV

where U and V are symmetric windows. Upon taking partial derivatives with respect to a, b,3and c, we have:

-M-in-i n-i n-i M-in-1
a I xiyj+bml y+cm I yj= I I y1 D(xi,yi) (6)

i=0j=0 j=0 j=0 i=Oj=0
M-1 m-In-1 M-1 m-in-I

a n 1, x + b 1: , xiYj + c n 7 xi = , , xi D (xi,yj) (7)
i=0 i=oj=o i= i=Oj=O

m-1 n-1 m-In-I
an xi+bm yj+cnm= 7 T D(xi,yj) (8)

i=O j=0 i=Oj=O

using the properties of symmetric sets, the plane parameters can be obtained without any matrix3 inversion. Solving for a, b, and c we obtain,

rn-In-i m-In-i m- In-1

xi D x(xi,yj) 1;1 y D (x5,yj) ;1D (x8 ,yi)
= i=Oj=, b= i=Oj=0 c i=Oj=0 (9)

m-1 2  - mn
n Yx 'Y

i=0 j=O

Each pixel of the image is then replaced by D (x, y) - z (x, y) Note that the segmentation3 results have been improved as shown in Figure 2. A final remark, the planar filter constructed,
will not affect the data if the offset is not large. Hence, this filtering step can be performed on all
the images without degrading the measurements.

I
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I Figure 2: Planar offset extraction. (a) Original real part. (b) Original Imaginary

part. (c) Filtered real part. (d) Filtered imaginary part.

I 2.3. Edge Detection of Flaw Measurements

In intensity visual images, the edges can be used to detect variations in the intensity. These
variations could be used to outline the boundaries of regions in images. In eddy current meas-
urements, the variations in amplitude response indicate changes. These changes are attributed to
the presence of the flaw. Noise also contribute to these variations, however, flaw regions can be
separated from noisy samples. Edge detection can be used here to enhance the visibility of the
flawed regions. Edge detection techniques are standard in the area of computer vision, and the3 reader is referred to [H1] for more details.

2.3.1. Sobel Edge Detection
Perhaps Sobel edge detection is the easiest edge detector. It is utilized heavily as an initial

investigation for vision systems. Sobel edge detection is basically a convolution of horizontal
and vertical masks over the image. Since variations are detected by differentiation, the masks3 used are an approximation to the directional derivative. The result is a gradient field with
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magnitude and direction over the image. The magnitude indicate tht, strength of the edge, while
the direction is the direction of the gradient field. The actual edge direction is offset by 90
degrees from the gradient direction. The masks are:

Horizontal Mask (D)
-1 0 1

1 ]/4 -2 0 2

-1 0 1:

I Vertical Mask (Di)
1 2 1

I1/4 0 0 0

1 -2 -:1

I It is assumed that the scanning of the image is done from top to bottom, right to left as in a raster
scan. The coordinate system used is:I
|y

The convolution of the masks with the image yields an approximation of the gradient in the x
and y directions. The edge strength at a pixel is defined by:

I D=(D +D 2 )1  (10)

with corresponding orientation:

U Eo =tan-(DylD ). (11)

I Figure 5 shows the result of the Sobel edge detector.

3 2.4. Iterative Thinning of Edges: Eberlein's Thinning

In this section, an iterative thinning algorithm will be applied. Results of thinning are used
to localize edges. Furthermore, thinning could be used to extract the orientation of the fibers in3 composite material.

The thinning algorithm described here is an iterative process. Originally, in [Ell, the algo-
rithm is used with four principal directions: North, South, East and West. The algorithm have
been extended to thin along eight principal directions as discussed next.

The gradient of the image is taken. To each edge pixel an orientation and a strength are3 assigned. Denote the orientation of the central edge pixel by the principal direction. A 3x3

I
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6 2

0

Figure 3: Quantization of edge orientation into eight directions.

moving window is passed over the edge image, the two neighbors at right angles with the princi-
pal direction are compared with the central pixel.
I5 4 3

7 0 1

Figure 4:Neighbor labeling for a 3x3 window.gTable 4 shows the corresponding neighbors for each orientation.

Table 4:Neighbors used in thinning eight directions.

3 Neighbors associated with
each principal direction.

Direction Neighbors
0 2 6
1 3 7
2 4 0
3 5 1
4 6 2
5 7 3
6 0 4
7 1 5

3 If any neighbor used in the comparison is less than the central pixel, then the central pixel is
increased by a portion of that neighbor, and the neighbor is decreased by that amount. Nothing
happens if the neighbor is greater than or equal to the central pixel, if 0 < ct < 0.5 denotes the

I absorption constant, then the central pixel is incremented by ax times the strength of the neigh-
bor. Mathematically, let p be the central pixel and n be the neighbor at right angles with theg same orientation as p, the thinning process is then:

I
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p +-a u(p-n) (12)

n --n -(xu(p-n) where u(.) is a step function. (13)

UU,
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I strength of the imaginary part (i) Phase angle of imaginary part (j) Imaginary part
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2.5. Spatial Filtering of Tow Signal
In this section filtering of the tows from laboratory measurements will be presented. The

filter utilized here is simple in nature and evaluates the applicability of the Fourier transform in3 tow elimination.
Tow elimination can be described by eliminating the spatial frequencies with large ampli-

tude. For example, Figure 6 shows an image with both a flaw and oscillation due to the presence
of tows that is a characteristic of the material under examination. If these measurements are
inverted, then the tows would be identified as flaws. By definition of flaws, they imply a change
in the conductivity of the material. Even though this is true in the strict sense, it is not desired to
reconstruct the tows in the material. Thus their elimination prior to reconstruction is necessary.

The straight forward approach to tow elimination from the measurements is to implement a
spatial filter whose response matches that of the tows. However, the flaw regions may be
affected by the filtering. In particular, when the flaws have a frequency structure close to that of
the tows, then the filter will degrade the flaws as well. This point will be examined more closely
after the filter is presented in the next section.

2.5.1. Spatial Filter Design by Magnitude Thresholding3 As mentioned above, a simple filter can be designed by considering the frequencies with
large amplitude. In order to extract these frequencies, the fourier transform is extracted and the
magnitude response is obtained. Once the magnitude response of an image is known, one may
look at these frequencies that have large amplitudes and suppress them. This is done here except
that the algorithm used for detecting large frequencies is based on the histogram of the magni-
tude of the fourier transform. To extract the large frequencies, the segmentation algorithm used
for flaw extraction will be utilized here. The segmentation algorithm is based on the amplitude
of the measurements and when considering the magnitude response as an image, the desired fre-
quencies are extracted or suppressed based on the desired components. Segmenting the ampli-
tude response yields the support of the frequencies with large amplitude. The filter is then
defined over this support.

let I(x, y) be a given meaurement and J(co., coy) be its corresponding fourier transform.
Denote Co to be the set of frequencies obtained from segmenting the magnitude of the fourier
transform. Then oo characterize the response of the tows due to their periodicity. The filter is

* then:
H (Cox , cy (¢aO,€oy) e 00

The impulse response of the filter is given by the inverse fourier transform of the filter fre-
quency response. A sample image containing a flaw and tow signal is processed in Figure 6.
The sequence of images and plots show the various stages of the processing in order to eliminate
the stripping.

I
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Figure 6: Processing sequence of tow elimination. (a) original image with tows and
flaw, (b) three-dimensional plot of the original image, (c) the magnitude of the
fourier transform of the image, (d) the significant frequencies (dark regions), (e) the
impulse response of the filter, (f) the filtered image over the support of the
significant frequencies, (g) three-dimensional plot of the stripped part, (h) the
filtered image over the complement of the significant frequencies, (i) the magnitude
of the filtered image, (j) three-dimensional plot of the magnitude.

1 3. LM Parameter and Noise Filtering

In this section, noise in eddy current measurement will be characterized and preprocessing
I the data will be studied along with obtaining estimates of the LM parameter. The pre-processing

will then consist of smoothing the data for inversion in particular to obtain bounds on the regu-
larizing parameter. Most of the available smoothing techniques require knowledge of the noise
properties. The term noise will denote the random component of the measurement. It is is intro-
duced at various stages of the measurement process and it is difficult to derive its distribution.

Starting with the data acquisition, noise enters the system from many sources. In order to
characterize the noise, the following is assumed throughout this section:

3 (1) The noise in the system does not depend on the material under examination.

(2) The noise does not depend on the location of the sensor or time.

D
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1 (3) The data acquisition system has sufficient bit resolution.

Assumption (1) implies that the noise properties are independent of the sample work piece
(i.e. satin weave, foil target,...etc.). For example, the distribution and the first and second
moments of the noise will not change when the sample changes. Furthermore, the tows which
will be eliminated for reconstruction, are not noise because their response is deterministic and
not random. Assumption (2) implies that the noise is stationary with respect to the spatial loca-
tion of the sensor or the time origin. Assumption (3) implies that the quantization error will be
ignored. All these assumptions will lend themselves to a mathematical formulation in smooth-
ing the data.

Suppose a signal f is to be measured. The measurement process introduces additional noise
to the present noise in the system making the estimate of the signal necessary. In relation to
inversion, the workpiece response is measured, and it is desired to estimate the "true" response
of the workpiece. If the assumption of additive noise is to hold, the following block diagram
(model) results:

I n(t)I°
i f (t) h (t) y (t)

Figure 7: Underlying model of the measurement and "true" signal

I The true signal f (t) is the ideal measurement with no noise, n (t) is the additive noise intro-
duced by the system dynamics or measurement, x (t) is the measured signal, h (t) is the smooth-
ing filter to be designed, and finally y (t) is the best estimate of f (t). The following two sectionsII
will cover the smoothing of the measured signal. The measurements have been segmented in
order to obtain the noise and signal characteristics. The spectral properties of each component
wi be needed to design the filter. Segmentation would give an estimate of these properties
since it separates the measurement into two regions. We should mention that the segmentation
results for both regions contain noise. The region identified with flaws should contain most of3the flaw signal, and the region identified with background should contain mostly noise. The seg-
mentation should give sufficient data to estimate the spectral properties of the noise and the flaw
regions. These properties are then used to derive a smoothing filter as shown in the next two
sections. First filter will be based on the Frequency domain, while the second is based on the
spatial domain and is more adequate to solve on a digital computer.
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1 3.1. Smoothing Filter Design -. Frequency Domain [PI]
The spectral properties of the model can be used to derive a smoothing filter. The model3 equations are:

x (t) "f(t) + n(t), (14)
y (t) =x () * h (t). (15)

3 Substituting Equation (14) in (15) the following holds:

3 y(t) = (f (t) + n(t)) * h(t) - yf(t) + y,(t) (16)

where yf(t) = f (t) * h (t) and y(t) = n (t) * h (t) are the responses to each component. In prac-U tice such a decomposition is not possible since only the measurement x (t) is available. The sig-
nal to noise ratio at time t0 is defined by:

PO) [y,@) (17)
4E[ [y(to) ]Z

Note that this expression assumes knowledge of the signal and noise characteristics. The seg-
mentation results may provide adequate properties to compute the signal to noise ratio or even to
find the smoothing filter h (t). Considering the square of the denominator in Equation (17) above
we have,

[yn(to)l] = 2n5 S,(o)H(cH*odo (18)I -0

where H (wn) is Fourier transform of the impulse response of h (t). The numerator is

yf(t0,)= 5 F (o) H (o) ej~od, (19)

where F(o) is the Fourier transform of the signal f (t). Note that only the sum of the signal f (t)
and the noise is measured. The segmentation may yield accurate estimates of these terms, how-
ever, the basis for the accuracy has to determined by comparing the inversion results with actual3 known cases. This numerator can be estimated by using Schwarz' inequality, that is,

I- FIFH~oeo) dol
____ _ S( o) (20I 1
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The signal to noise ratio p(to) is bounded by:

I _ yfto_) 1 _- F*(o)F(co)
00 = Eyq)1 5n ±L .( do). (21)p~~to) =%'[ y(to)l~ I f SMn(CO)

I The signal to noise ratio is maximum if the previous equation is an equality, hence,

H kF*(w) ejo. (22)IH (w) =k (22)co

The impulse response of the filter h (t) is the inverse Fourier transform of Equation (22). The
maximum signal to noise ratio is:

1MAX f F*(o) F( do. (23)27 -. Sn.((O)I
The filter given in Equation (22) is well known and is called a Matched Filter. The Wiener

I filter is covered next for comparison with the matched filter. The Wiener filter will be derived
by using the Orthogonality Principle. The expression for y (t) can be written in terms of the
measured signal x (t) to give,

f x (t - a) h (a) dot, (24)

where h (t) is the impulse response of the desired filter to be determined by minimizing the total
error,

e e = E [ (f (t) - y (t))2]. (25)

3 By using the orthogonality principle (see [P1]), the resulting equation is:

E f(t)-. x(t-a)h(a)da] x(t-)] =0, forallT. (26)

In terms of the correlation functions we have:

Rft= f Rxx(, - a) h (a) da for all T. (27)
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Solving Equation (27) for h (t) yields the Wiener filter. Note that this equation involves the
cross correlation of the signal and the noise Rf,, and the auto-correlation of the measurement
R,. The error that results from using the Wiener filter is given by:

Rff(O)- f Rf(c) h(a) dc. (28)

If the noise and the signal are orthogonal, then the filter response reduces to:

I~~ H(co) = Sf()Snt)' (29)

a very well known result.

I 3.2. Smoothing Filter Design -- Spatial Domain [A2]
Again by assuming the signal model in Figure 19, a smoothing filter is examined next

without the transform method. The frequency methods require spectral estimation which by
itself is an involved subject. An important point is that the noise characteristics are difficult to
obtain analytically and thus the only method of obtaining these properties is based on the seg-
mentation.

Suppose the noise is small compared with the signal, or even suppose that the noise is
ignored. Then the actual measurement would be used as an estimate of the true signal. Thus if
x (t) is an estimate of f (t) then the expected value of the error squared is:

E[ (f J)2 ]=E[ (f-x)2 ]=E[ (f-f-n) 2 ]=E[ n 2 I=-- 2,  (30)

where the noise is assumed to be zero mean process. Equation (30) above implies that if the
noise is ignored, then the expected error is equal to the variance in the noise. This is unaccept-
able under some actual data noisy measurements. Assuming the signal and the noise are Gaus-
sian, with joint distribution would lead to better estimate. First, the Gaussian assumption is
examined, then the question of what happens to the error if this assumption fails.

Sulpose the signal f (t) and the noise n (t) are zero mean Gaussian processes with vari-
ances Of and a, repectively. Consider the conditional density 8/Iz, the density of the signal f
given the measurement x to be:

8(flx)= I exp- _ f 'I)2  (31)

fx(27r)"I 2e07p

where IpfI., and of are defined by:

I
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IA Ix (32)

O f I X +02 (33)

n Thus if the estimate of the signal f is taken to be the conditional expectation of the signal given
the measurement, i.e.,

I 2

f=EE[fI1X=x=fjx=X 2f2' (34)

then the expected square error is:

Et[V-f)2 I =  fI UC <min( Gf, Gi). (35)

meaning that on the average, a better estimate is obtained.

3.3. LM Parameter Estimation
The laboratory measurements are complex numbers defined over a rectangular grid in the

spatial domain. The LM Parameter depends on the statistical parameters of the two-dimensional
measurements which will be denoted by y, defined in [KI] as:

* 2an =(36)I Ga

where a! is the noise variance, and .] is the signal variance. The noise is assumed to be
independent and additive to the signal. Further more, the signal and the noise are uncorrelated
stochastic processes [KI]. If the correlation assumption fails, then the expression for the LM
parameter involves the correlation matrices of the signal and noise processes. If the uncorrelated3 assumption does not hold, then explicit expressions have to imbedd the correlation into the
inversion scheme. At this time, the y is evaluated as given above in Equation (?). Should this
expression prove incorrect, then the signal and noise have to be treated as correlated random3 variables.

The expression of y assumes that the noise and signal properties are known. In earlier
reports, a method for segmenting the eddy current measurements have been presented. The seg-
mentation results will be used to estimate the y. To review, segmentation yields two regions, a
flaw region and a background region. These regions are not exact since noise is contained in3 both of them. If the sample size is large enough, then our estimate of the y should be accurate.

I
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The mean and variance of a complex random variable is computed next for later reference.
Let z be a complex random variable. That is, z has the form z = x + j y where j is the imaginary
unity in the complex plane, x and y are real random variables. If x and y are stochastic
processes, then z is called a complex stochastic process. A complex random variable is the sum
of two real random variables with j being a constant. The properties of interest are the mean and
the variance of a complex random variable. The expectation of a complex random variable is:

It =E [z]=E [x +jy] (37)

I By linearity of the expectation operator, the expected value reduces to:

i nmE[z )=EIx]+jE[y]=x + py. (38)

The variance of a complex random variable is obtained from the definition:

Var (z) a E [(z - I.) (z - I=)*], (39)

where * denotes complex conjugation. Expanding the terms above, one obtains the following
expression for the variance:

5 Var (z)= E [(z - )(z -. )] (40)

=E [z z -z-it z +I. ] (41)

=E [z z*]-±t E [zz-4E ] ]+. 1i (42)
=E [ Iz12] _ Ig't 12. (43)

I The magnitude of the complex random variable z is expressed in terms of its real and imaginary
components (i.e. I z 12 = x2 + y2) to yield:

Var (z)= E x 2 +y 2 _- I-, (44)

5 Var (Z) = (E [x21 _ p 2 ) + (E [y2] - I2) (45)

Var (z) = Var (x) + Var v) = 2 + U 2  (46)

I That is, the variance of a complex variable is the sum of the variance of the real part and the
variance of the imaginary part. Hence, the final expression for y is then:

:r io2 + y2 (47)
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The segmentation results of the actual data set (the actual real and imaginary measurement)
is in Appendix A. The dark regions are those points identified as flaws, the remaining points are
identified as background. For each frequency, the variances are computed and the ratio y profile
is shown in Figure 20. Table 2 lists some of the properties of y.

Table 2: Properties of y for some experimental data sets.

Some Characteristics of Y
Set Average gy Variance a4 Minimum Maximum

decO1 0.46233 0.001448 0.322163 0.50251
dec07 0.16151 0.002750 0.009524 0.09224
nov20 0.41857 0.000813 0.378043 0.50224

Should this method provide an inadequate value for y, then the alternative is to pre-processI the data with any of the two filters derived earlier.

100.o Profile of GAMMA versus Frequency

i .750

l .625

.500

* ?

.121

I r====;=-decO?
1 7 10 13 1'6 19 22 2!-

Frequency Sample

3 Figure 8: LM parameter of some actual data.
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1. Introduction

The conjugate gradient method is a very famous method in optimizing a given
objective function with or without constraints. Parallelism in various steps of this
algorithm is clear and the recurrence phenomenon is obvious. Our objective is to
exploit the parallelism in this method, and design Optimal Systolic Arrays which
represent different steps as a set of recurrence equations with minimum Space and
Time complexities. Parallel computing is receiving a rapidly increasing amount of
attention. In theory, a collection of processors that operate in parallel can achieve
substantial speedups. In practice, technological developments are leading to the
actual construction of such devices at low cost. Many architectures for parallel
computations have been proposed in the literature. Some of these machines actually
exist or are being built, others are useful for theoretical design and analysis of parallel
algorithms while their realization is not feasib le due to physical limitations [3].

The quality of the parallelism will be judged by the resulting speed up, which is
the running time of the best sequential implementation of the algorithm divided by
the running time of the parallel implementation using p processors ,and the processor
utilization ,which is the speed up divided by p. The best that one can hope to achieve
is a speed up of p and a processor utilization of one [3), [4].

There are a number of reasons why parallel implementation can be slower than
anticipated in a theoretical analysis, slower perhaps than the fastest sequential
implementation. Therefore the goal will be the design of an optimal implementation
with due attention for:
processor structure,communication costs, and data distribution.

I
2. On Supercomputing with Systolic Array Processors

I The main driver in designing such processors is the need for low cost, high
density, fast processing devices.
Current parallel computers can be classified into three structural classes : Vector

Processors, Multi-Processor Systems, and Array Processors. The focus has been on
the last class because of promissing solutions to our need. An Array Processor is an
array of processor elements (PE) with direct ( Static ) or indirect ( Dynamic )
interconnection. The most critical issue is communication or moving data between
PE's in large scale interconnection network. Signal Flow Graph is the most useful
graphical representation for scientific and signal processing computations. We find

I
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two major classes of SFG : Those with local interconnections, and those with global
ones.

Now, we can define Systolic Processors. Systolic Processors are a new class of
pipelined array architecture. In general, a systolic system is a network of processors
which rhythmically compute and pass data through the system. It has the following
properties : Synchrony,Regularity,Locality,Pipelinability. These computation arrays
are very useful since most scientific and signal processing computations can be
represented in Signal Flow Graphs, and most of these graphs can be systematically
converted into Systolic Arrays [3].

To indicate the breadth of the systolic approach, the following is a partial list of
problems for which systolic solutions exist [2]:

Signal and Image processing:
- FIR and IIR filtering and I-D convolution;
- 2-D convolution and correlation;3 - discrete Fourier transformation;
- interpolation;
- I-D and 2-D median filtering; and

Matrix arithmetic:
- matrix-vector multiplication;
- matrix-matrix multiplication;
- matrix triangularization;
- QR-decomposition;
- solution to Toeplitz linear systems;
- singular value decomposition; and
- eigenvalue problems.

Added to the above is a whole list of non-numeric applications. Many
alternatives exist for the implementation of systolic algorithms at both chip and board
levels. Let us list various kinds just to have an idea about the flexibility involved [2):I

1. Single-purpose systolic array: It is a special purpose systolic array processor
built just for that specific Algorithm.
2. Multi-purpose systolic array: The approach in designing such arrays is
based on the observation that many systolic algorithms can be executed on3 systolic arrays of very similar structures.
3. Non-programmable building-block: This consists of building block

I
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processors capable of executing a few predefined, and commonly used
functions.
4. Programmable systolic arrays: These are systolic array processors, where a

fixed number of programmable PE's are connected together in a certain manner,
possibly with other control circuits.

I The exploitation of parallelism in an algorithm has many steps and should take
into account many time and space constraints [5]:

a- Each algorithm could be represented by a dependence graph which generates
dependency constraints.
b- Use same processors for different calculations but with one schedul. This
should help minimizing the space complexity but puts constraints on the
scheduling process.
c- The communication between different processors has to be accounted for.
d- Use of Single Assignment Language as a way of taking advantage of
parallelism in an algorithm.

I We have seen the advantages in designing Optimal Systolic Arrays for
various steps and parts of the Conjugate Gradient method. The adoption of the
pipeline architecture, which puts these steps together to represent the whole
algorithm, becomes very practical with minimum Time and Space complexities.

I
3. Design of Optimal Arrays for Matrix Arithmetic

Different approaches will be taken toward designing optimal arrays which
represent various matrix arithmetic. We will be looking into the operations
which are repeatedly used in many steps of the Conjugate Gradient algorithm.
Let us define some parameters which decide the general structure of our
processor [4].

Parameter 1 - Velocity of Data Flow: The velocity of a datum x is defined

as the directional distance passed by x during a clock cycle and is denoted by xd.

Parameter 2 - Data Distribution: For a two-dimensional array X used as
input or output of a systolic array , the elements along a row or a column are
arranged in a straight line and are equally spaced as they pass through the
systolic array, and the relative positions of the elements are iteration
independent. The row displacement of X is defined as the directional distance
between xi~j and xi.lj as X passes throught the systolic array and is denoted by

I
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xis.

Similarly, the column displacement of X (xjs) is defined as a directional distance
between xij and xi~j+ 1.

Parameter 3 - Period: Suppose the time at which a computation is
I performed is defined by the function r, and the time at which an input is

accessed for a particular computation is r,. The periods of i and j for two-
dimensional outputs are defined as

Sti--%(z,.)-r ( zi ) (3.1)

tj---r (zt4+I)-cc(z j) (3.2)

In computing zi. j-zi, j ,x(i,k),y(kj)], it is assumed that the recurrence is
expressed in a backward form or has been converted into a backward form.
Define the period of iterative computation for two-dimensional outputs as

tk--tc (Z 1 )-c(zt3) (3.3)

Note that rk is always positive. Define the periods of X and Y with respect to k in
the computation of zj as the time between accessing successive elements of X
and Y. FormallyI

tkx ---T& (Xi. k+ I)-T&a (XL k) (3.4)
I tky---'ta (Yk+l .j )"X, (.Vkj) (3.5)

z1h and tky may be negative depending on the order of access defined in the
subscript-access functions x(i,k) and y(k,j). Since data needed in the
computation of z[t1 after the computation of z~j must be assembled in time tk, it
is true that

There is a total of thirteen parameters for two-dimensional linear

recurrences, of which three are for the velocities of data flow, Xd , Yd , Zd, sixiare for data distributions, xis, xjs, %Yis, yjs,. zis , zjs,and four are for the periods,

a, t, tI, tj. These parameters can be used in constraint equations to govern
the correctness of the design and in performance measures to define the number

I
I
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of PE's needed and the completion time. The following theorem states the

relationships among these parameters.

[] Theorem 1 (Theorem of Systolic Processing) 14): Suppose a two-
dimensional recurrence computation zj = f[zk' ,x(i,k),y(k,j)] is implemented

in a systolic array, then the velocities, data distributions, and periods must

satisfy the following vector equations:

-4 -4 -4I tIxXd+Xtb Zd (3.6)

tkyYd+ys=tkyZd (3.7)

tiXd+Xis--tiYd (3.8)

ti+ Z+Zi=ti Yd (3.9)I - 4-4 - 4

tj yd+Yjs=tj Xd (3.10)
-4 -+ -4

tjZd+Zjs~tjXd (3.11)

3.1 Matrix - Matrix Multiplication: Let us now apply the above definitions

and theorem on the following recurrence equation which represent the matrix

multiplication of X (nxn) by Y (nxn) to give Z (nxn).

Izj O 1 + Xikyir~j

i These equations are true for 15i, j, kqn. The design problem is formulated

minimize T subject to (3.6) to (3.11) and

I -+ -+

t -lxd I!1 or Ixd I=0 (3.12)

l I  --- Iy <lor ,yd,=0 (3.13)

1 -4 - 4

I I l~ttitmax ; :51 d !5 O Igtma Ydlt I t=0 (3.13)
-IdL-r l11or I I =0 (3.14)

tkmax d Z

-+ -4 X-+ I =k~ (3.16)I -- I tk I I d I =k I<!tkmx; I ti I I yd I =k2<5timax; I tj I I d I35tnm (.6
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IxI0;; I*;1 xb I00;l yks I00 (3.17)
1-4-4 -+Iy13 I*0; 1i 5 10 ;I zs 10 (3.18)

U In our example ( XxY = Z ) these matrices are flowing in three different
directions (see Fig. 1) and have (2n - 1) streams of data flow, hence the #PE for3 X and Y is (2n- 1)2. However, matrix Z is flowing in a different direction which
cuts off two comers in the PE configuration. #PE is reduced by 2n. The time
needed for multiplying two n-by-n matrices is ntk+(n-1) I ti I +(n- 1)1 tj I since it
takes ntk steps to compute z1 1I, (n-1)1ti I steps from computing zj. to zTI, and
(n-I) I tj I steps from computing zi.n to 4.n. In the design (Fig.9-1), no load or
drain time is necessary. In order for systolic processing to be more efficient than
a serial computation, it is necessary for T I'.. j. By using the minimum values
for two of the periods (tk=l, Itj I=1, It I=1) in inequalities (3.12) to (3.18), the
upper bound for the other period (tjma, tima, tjmax) is obtained.

It is noted that systolic designs for linear recurrence equations are
independent of the problem size. To reduce the search complexity, an optimal
design for a smaller problem can be found (Fig. 10-1 for n=3) and is used to
extend to the systolic design for a larger version of the same problem [4].

To minimize the completion time, the different directions of data flows are
first determined. The maximum values of tk. ti, and tj are found. The speeds of
the data flows are evaluated from (3.16) by using k, =k 2 =k 3 = 1. The six
remaining unknowns on spatial distributions can be solved from the systolic
processing equations (3.6) to (3.11).

By using the minimum values for tk=ti=tj=l we found a feasible solution
which satisfies the constraint equations (3.6) to (3.18) and the resulting
completion time T(n) and the #PE are given by:

i T(n) = 3n - 2

#PE = 4n2 - 6n + II
3.2 Matrix * Vector Multiplication: Similar approach is taken toward the
design of Optimal Arrays to represent the Matrix Vector Multiplication. AxX =

Y where A is (mxn) matrix, X is (nxl) vector, and Y is (mxl) vector.
This multiplication is represented by the following recurrence equation:

X
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0 y =0

= y.-'+akxk

I For i=l ......... m and k=1 ....... n

With an objective function of T(n)xPE, we take advantage of the Complete

Binary Tree which could be built for the addition of elements. If n is not a power
of two, we add more zeros to make it one, otherwise n is suitable for our

structure. The following theorem is of great importance to us in deriving the
equations for the completion time T(n) and the #PE.I

Theorem 2 (Theorem of Complete Binary Trees) 11]: If v is the number of

leaves in a complete binary tree, then the height of that tree is h = log2 v, and the

total number of nodes in the same tree is # nodes =2 h+1 - 1.

3 Using the above theorem, and the architecture presented in (Fig.10-2) we
can conclude that:

IT(n) = m + log2n

#PE = 2n - I

3 Since we have one tree which has (2n - 1) PE's.

3.3 Vector - Vector Multiplication: In Vector-Vector multiplication, if T(n) is

the objective function then one Complete Binary Tree is needed and is presented
in (Fig.10-3) with the following results:

T(n) = I + log2n

3 #PE = 2n - 1

3 3.4 Vector - Vector Addition/Substraction: In Vector Vector

addition/substraction, the objective function is T(n), the corresponding array is
shown in (Fig. 10-4) with the following results:

T(n) = 1

I* X-8



3 #PE = n

Where n is the size of the vectors (X, Y,and V) in

i X+/-Y=V.

4. Summary and results

We can list the different speed-up and processor utilization of each
processor machine we analysed, with the following definitions [4]:

Processor-Utilization = Speed-Up where
#PE

SpeedUp =Tbest-mquential

Speed-Up ale

i)- In Matrixnx x Matrixnm we have [1]:

n2 , 1 +18(-)3S-U = 3n-22

n2.81+18(2
(3n-2)(4n2-n+l)

I ii)- In Matrixmnm x Vectornx, we have:

£ s~= 2nxmS- =r+log2 n

P-U = m 2 nxmn(m+l0g2n)(2n-1)

iii)- In Vectorlxn x Vectornx, we have:

l+log2nI = =
1+02n

(l+log2 n)(2n-1)
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3 Knowing that the best one can hope to achieve is a speed-up equal to
#PE and a processor utilization of one. Let us try to get a better understanding3 of what our design achieved by considering a numerical example.

i Type of Oper. Size S-U P-U

2 Matricesnxn n=300 47K 0.13

Mat.mmxVect.., m-10 n=10 4  20K 0.602

(Vect.xVect.)n n=10 4  1.33K 0.05

I
From the above table we see the large S-U (Speed-Up), and the small

P-U (Processor Utilization) except in Mat.xVect. , that is caused by the
nature of the respective objective functions which were minimized in our
design (i.e. T(n) in first and third operations, and #PE x T(n) in the second3 operation).

I
I

I
I
I
I
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3 5. Conclusion

After designing these arrays, trees, and vectors in different architectures,

the question of the realization of such parallel machines is raised. Available
VLSI chips have a maximum number of transistors that can be built in one3 chip. This number is in the neighborhood of 500K. In our case all of the PE's
are either scalar adders, or scalar multipliers, with the worst case (in arbitrary
structure of square matrix multiplication) being 2(4n 2--6n+l). In other words
the maximum value that n can take is max(n)= 333 (in using one systolic
array only). Therefore for bigger dimensions, partitioning of the given matrix
is considered. On the other hand, for other parallel machines designed for

Matrix x Vector, and Vector x Vector ,max(n)= 250K which is very
encouraging. Another subject could be raised about what kind of accuracy the
used scalar adders and scalar multipliers have. In this area we can achieve 32
bit floating point using serial bit operations, and if highly parallel architecture
is requested, this could be another independent project and design by itself.

We have seen the numerous advantages in designing Optimal Systolic
Arrays for various steps and parts of the Conjugate Gradient method. The
adoption of the pipeline architecture, which puts these steps together to
represent the whole algorithm, becomes very practical with minimum Time3 and Space complexities.
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QUALITATIVE ANALYSIS OF ELECTROMAGNETIC
FIELDS FOR FLAW DETECTION

I
5 1.0 Overview

As an alternative to the quantitative methods typically used for non-destructive evalu-
ation of materials here at Sabbagh Associates, the possibility of using qualitative methods
to detect and classify flaws was explored. The tact used was to examine electromagnetic
fields for features which would yield information as to the presence and nature of flaws.
We use the term "artificial intelligence" to describe the techniques tried since the programs
developed mimic the way a human being might detect and classify a flaw by examining a
graph of a magnetic field.

I Models for examing EMFs of two types of materials were developed, on for stainless
steel and one for graphite composite. The stainless steel version was developed more
extensively, since accurate computer models for depicting an EMF of a field for a specified
flaw exist. These models, developed at Sabbagh Associates, allow the user to define the
size, shape, and location of a flaw in a material, as well as the frequency the data was
gathered at and the nature of the material used. The techniques developed using the
computer model were also test on laboratory data, with favorable results.

Only lab data was used in developing the program for graphite composite since ac-
curate models for graphite composite have not yet been developed. As a result the effect
of flaw size and depth on the EMF could not be tested fully, since the physical materials
can not be easily manipulated to test for different flaws. However, the groundwork is
laid for further refinement once the computer models for graphite composite materials are
developed.I

5 2.0 Qualitatively Analyzing the Data

I|

2.1 Patterns in the Data

I After examing z, phi, and radial data, radial data was chose as the field type to use
because the signals for radial data obtained during actual collection are stronger than for

I sor phi data since the sensors can be placed closer to the tube.

I
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3 2.2 The Flaw Series

A set of 16 flaw series was developed to determine how the shape of the graph of the
EMF was affected by the nature of the flaw. Notice that the dimensions increase by a
factor of 2. These flaws were designed to give an easy reference to the effect of the flaw
dimensions on the field perturbation; i.e. doubling the width of flaw T increases the height
of the peak by so much; etc. Each of the flaws in the series came in nine different depths:
2/10, 4/10, 6/10, 8/10 on the inside of the tube, all the way through, and 8/10, 6/10,1 4/10, 2/10 of the way through on the outside. The flaw series is listed in the table below:

Length

8 16 32 64

5 10 tT tS nS vS

Width 20 tR sT S iS

3 40 sR R T IT

80 vR wR wT bT

First, to see how EMFs changed with flaw depth and frequency, the graphs of each
were generated and printed (see figures la-e). Several discoveries were made. First, it was
determined that the dimensions of the swellings were essentially the same in the z and
phi directions for different frequencies and depths, varying only in height. Since the width
and length of the swellings remained fairly constant over frequency and flaw depth, it was
deemed likely that they could give an accurate indication of the length and width of the
flaw. For example, flaw R4 has a length of 16 z-units, and 40 phi-units. Every eighth
point was plotted. By examining the graph "eyeballometrically," we can see the distance
between the two peaks is approximately 2, which is 1/8th the flaw length. Likewise, if
we measure the distance at half the bulge's height, we see it is somewhat greater than 4,
close to 5, which is approximately 1/8 of the flaw's width. This holds true for the other
flaws in the R series, as well as the flaws in the S and T series. Therefore measuring the

I peak-to-peak distance and the width at half-height will give a good estimate of the flaw
shape in the z and phi directions.

By examining the maximum values for each plot over a range of frequencies, we noticed
that the values followed a pattern. Therefore the data was examined again and plotted in
a two-dimensional graph according to the maximum values over the range 10kHz to 5MHz.
It was found that we got the maximum response for each flaw in the real data at around
37 kHz, no matter what the dimensions of the flaw in the z, phi, and r directions were-a
phenomenon which no one here was able to explain. Since the data gathered at Purdue
didn't use frequencies that low, we haven't been able to verify this experimentally. It
does, however, suggest the concept of a representative frequency which would yield a value
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3 indicative of the flaw depth. Also, we noticed that when the flaw was on the outside of
the tube the response dropped off in the higher frequencies. This suggests that measuring
at a low frequency and again at a high frequency and comparing the results will indicate
wheather the flaw is on the inside or the outside of the tube, since the value will drop off
significantly when the flaw is on the outside. (See figures 2a-d.)I

I
3 2.3 Organizing Data by Depth

To show the effect of the flaw depth on the EMF, the data was plotted according
to flaw depth. To further show the effect of changing the width and length of the flaw,
flaws with similar widths but varying lengths were plotted together, and flaws with similar
lengths but varying widths were plotted together. These plots were made at three different
frequencies: 200kHz, 700kHz, and 4MHz. It was found that increasing both the width and
the length of the flaw causes a greater peak height, but increasing the- width causes a
slightly greater increase than increasing the length.

It was hoped that some pattern would emerge clearly showing the depth of the flaw
by looking at the height of the peak on the graph. Unfortunately the results were not
as promising as expected, as the values for all flaw depths on the inside and all flaw
depths on the outside were too close together to be distinguished clearly, particularly
when considering the presence of noise. The tests did prove promising in one respect,
however. The response for flaws on the inside of the tube was significantly greater than
flaws on the outside (as in figures 2a-d), so if nothing else we could determine which side
of the tube the flaw was on by examining the peak height using this method.

3 g3.0 The Stainless Steel Model

I
3 3.1 Flaw Length and Width Estimation

While different flaws produce "bumps" in a graph of differing dimensions, the graph
itself always has the same basic form: two bumps aligned along the z-axis. It was suggested
in earlier quarterly reports that by examining these bumps a fairly accurate estimation of
the flaw could be made. A C program was developed to test and refine this idea. The

I results were promising.

It was thought an accurate estimate of the flaw length could be obtained by measuring
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3 the distance between the peaks, and an estimate of the flaw width by measuring the width
of a bump at hall-height. So, the field was read in to a two-dimensional array and a
qualitative analysis performed to obtain these measurements. So that the accuracy of the
estimation could be judged, a facility for entering the flaw dimensions was added. Two
versions of the program were implemented: one for reading data from the Sabbagh Model,
and one for reading lab data gathered at Purdue from a previous project. A discussion of
the program and test results follows. The program was first developed for stainless steel
materials. Two versions were developed, one for analyzing data from the Sabbagh Model
and one for analyzing lab data. This was because the field dimensions and usefulness of
the data differed between the two.

3.2 Reading Data.

Data is "gathered" from binary data files residing on the Alliant in such a way as
to simulate a two-pass collection of data with a sensor. At first, every eighth point along
the z- and phi-axes is read in and stored in the array. This constitutes the initial pass.
Then this coarse-resolution field is examined and the location of the flaw is found. Then a
second pass is made, centering around the region within the side and end points that are
less than 1/8 the peak value. Every point of data is read this time, giving fine resolution
(see figures 3a-b).I

5 3.3 Estimating Flaw Length and Width.

When the flaw has been located, the distance between the peaks along the z-axis is3 measured, giving an estimation of the flaw length. The width of each of the two bumps
at half-height is also measured, giving an estimation of the width at each end. The actual
dimensions of the flaw can then be entered and an idea of the accuracy can be gotten either
graphically or verbally (see figures 4a-8f).

Real, imaginary, and magnitude data was tested to see which gave the most aLJrate
representation of the flaw. Imaginary data proved to be inaccurate, often overestimating
the flaw size by a considerable amount. Real and magnitude data were both more accurate
than imaginary data, but the real data occasionally would become irregular, such as might5 happen when the flaw was on the outside of the tube (see NAVAIR II quarterly report
#1). Magnitude data proved both the most accurate and the most consistent, so it was
chosen as the standard form. (Phase data was ignored, since it gives no useful information3 with this algorithm.)

We also wanted to overify that the algorithm would work for lab data as well as model
data. 500kHz data was chosen for length and width estimation both because it seemed to
provide useful information, and because we have lab data from Purdue at this frequency.
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The field can also be measured at 4MHz to determine whether the field is on the inside or
the outside.

U
5 3.4 Performance.

The algorithm was tested with all the flaws in the flaw series. The results were
promising. When the flaw was of sufficient size, the algorithm gave very accurate results
(see figures 5a-b). When the flaw was smaller in either the z or phi direction, the algorithm
tended to exaggerate the size of the flaw.

3 The algorithm was also tested with data for flaws that were available both in the
Purdue data and the model data. The algorithm gave similar results for each (see figures
6a-7f), This demonstrates the feasability of this algorithm for use on real data, as well as
the accuracy of the Sabbagh model.

When the flaw runs all the way around the circumference of the tube, the bumps go
all the way around as well instead of dying off (see figures 8a-f). In this case the original
algorithm won't work, since you can't measure the width at half height of the bump. So,
the ability to distinguish between slot-type flaws (those discussed previously) and uniform3 thinning flaws was added (see figures 8a-c). This suggests the possibility of "tuning" the
algorithm to look for and distinguish between the fields of different flaw types. If a certain
type of flaw were expected in a material, the data could be interpreted in such a way as
to represent a flaw of the expected type. If we knew, for example, that flaws were likely to
be long but very thin (resembling flaw h in the Purdue data), we could use the distance
between the peaks as the length estimate, but make the width estimate much narrower or
ignore it altogether.

One problem with the algorithm in its current state is that it considers all flaws to
have a regular rectangular shape. Where a flaw is of a different shape error could result.
This occurred in the test for flaw e, which is deeper in the middle than it is on the ends.
The algorithm underestimated the length. As mentioned before, the algorithm could be3 adjusted to take this into account if it were likely that non-rectangular flaws would be
found. Where the expected flaw type varies a lot this could be a problem, since it would
make it difficult to predict the type of flaw represented by the bumps in the field. However,
it is likely that a flaw of similar size to the actual flaw would be predicted, which would
still have some value.

Where greater accuracy is required than could currently be provided by this algorithm,
we could still use it to locate flaws and define a "region of containment" within which
we know the flaw would be found. We could then apply a quantitative algorithm such
as that discribed by Sabbagh & Sabbagh (Final Report, DOD #DE-AC02-83ER80096,
and Review of Progress in Quantitative Nondestructive Evaluation, Vol 6A, Thompson &
Chimenti, ed.), which would give greater accuracy but which is considerably more time5 consuming than the method described here. By defining a region of containment, we could
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have the quantitative algorithm only look at parts of the field that are useful, ignoring
more irrelevant regions.

I
3.1 Depth Estimation by Indexing and Interpolation

Recall that when the field was calculated for frequencies ranging from 10kHz to 5MHz
and the magnitude peak values measured and plotted, there was consistently a maximum
response at about 40kHz. This phenomenon occurred regardless of flaw size and depth (see
2nd Quarterly Report, NAVAIR II). Upon re-examining this data, it was noticed that the
peak value increased regularly with flaw depth. The data was replotted at this frequency
for all sixteen flaws in the series according to depth. Sure enough, for a given flaw length
and width, the peak value increased noticably as the depth increased. This was true for
flaws on both the inside and outside of the tube. A scale could be constructed for known
depth values, and then when a flaw of unknown depth is found we could measure the peak
value and interpolate between known values, giving an estimation of the depth of the new3 flaw. In addition to flaw depth, the peak values also increased with flaw width and length.
therefore our scale had to be three-dimensional, so that the effect of the length and width
could be taken into account as well as the depth.

3 The peak values increased with flaw size at a different rate depending on whether the
flaw was on the inside or the outide. It was also noticed that when the field was measured
at a high frequency (4MHz), peak values were at a consistent level when the flaw was on
the inside, but dropped near zero when the flaw was on the outside. This was due to
the shallow field depth at high frequencies. This fortunately provides us with a method
of determining whether the flaw is on the inside or the outside. Two three-dimensional
tables of known peak values at 40kHz can be constructed, one for the inside and one for
the outside, and by measuring the peak value at 4MHz we can determine which table to3 use to estimate the flaw depth.

I
3.5 Implementation

I A C program was written incorporating two tables containing peak values for all the
flaws in the series at seven depths each (0, 1/10, 2/10, 4/10, 6/10, 8/10, and 1 times the
thickness of tube). When running the program, the user inputs the flaw length and width
(assuming the length and width can be determined using other means, as in section 2),
and the maximum values at 40kHz and 4MHz. The program then decides whether to useI the inside or outside flaw table by comparing the 4MHz value with a threshold (0.3 was
chosen since it lay inbetween the measured values for the inside and outside peak values).
Then the length, width, and 40kHz value are interpolated between values found in the3 appropriate three-dimensional table, resulting in an interpolated value for the depth.
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I

3.3 Results

To test the program, data was generated using the Sabbagh model for various flaws at
40kHz and 4MHz and the maximum value for each field was taken. Peak values for flaws
used to create the interpolation tables were of course right on. For flaws with the same
widths and depths as those used to create the tables, but differing in depth, the results were

I less accurate. For flaws having widths an depths similar to those used to create the table,
the results were off by around 2%. Where the length, width and depth all differred from
table values, the error was higher (about 10%) due to the multiple interpolations. Data
for flaws on the outside of the tube (farther from the sensor) are always less accurate than
for flaws on the inside, and this instance is no exception, as error was typically about 33%.
Once, a moderately deep outside flaw was mistaken for an inside flaw, since the peak value
for the flaw at 4MHz was greater than the inside/outside threshold value. (Obviously, the
algorithm needs a little tweaking.)

Unfortunately this algorithm is not currently testable on lab data, since we don't have
any data taken at 40kHz. (Experts suggest that the sensors used to gather data are not
appropriate for collection at frequencies below 100kHz, although a different sensor design
might give good results.) Also, it is likely that results would be misleading when used
on non-rectangular flaws. However, several ideas were learned in this program: 1) that
it is possible to find a frequency which will give the best results for a given classification
scheme, and 2) by taking data at a high frequency, it is possible to determine whether a
flaw is on the inside or the outside of the material.

4.0 The Graphite Composite Model

After the stainless steel program was developed, the techniques developed for identify-
ing flaws in stainless steel were adapted for graphite composite materials. Since the model
for graphite composite EMF's is not fully developed yet, the program was designed to use
actual data gathered in the lab. Currently, the program can depict and manipulate EMF's
either on the terminal screen, on hard copy, or on a high-resolution graphics monitor.

3
4.1 Description of Program

Some of the lab data had a slope to it, so that values on one end were significantly
greater than values on the other end. In order to better discern aberrations due to flaws,
the data was sent through a filter which calculated a best-fit plane with the data and
subtracted the planar values to level the data. This filtered data was then read in by the
program and organized to allow detailed analysis of the field.

As with the stainless steel version, either the real, imaginary, or magitude data of the
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EMF can be viewed. When real and imaginary data are seen in grayscale representation,
flaw bumps appear like actual depressions in the material due to an illusion (see figure
11). For manipulation and analysis, magnitude data proved to be more useful since all
the bumps have positive values and are more easily distinguishable from the background,
although the grayscale image was not as appealing (see figure 12).

The program was developed using C on the Alliant. To take advantage of the high-
resolution graphics monitor, a version was also made which ran on the IBM AT. For
convenience, the field can be printed out on the screen using digits from 0 to 9 representing
low to high points in the field, a feature available on both versions of the program. On the
AT, output can be toggled from the terminal to the graphics monitor.

To clarify the location of flaws, the flaw field can be weighted in such a way as to
distinguish the flaw from the background. Two methods are implemented: a masking
technique which allows you to incrementally increase the contrast between high and low
points, and a flaw region locator which will pick out and highlight regions where a flaw is
likely (see figure 13). Each method has its advantages: with masking the image can be
tuned to pick out the most likely flaw locations. The region locator can also pick out likely
flaw locations, but without the fine-tunability. It can weed out individual high points that
are likely to have been caused by noise and do not indicate a flaw.

4.2 Suggestions for Future Development

What we have developed here so far is a methodology for detecting flaws in graphite
composites. This methodology could be improved by making the program smarter, able
to do things automatically that currently require operator intervention. The flaw region
discernment feature could be tuned to take into account the magnitude of individual points
compared with the surrounding points to more intelligently decide whether a high point
value is due to noise or the presence of a flaw. The weighting of the masking feature could
also be made more intelligent, so that EMFs with loud background would use a different
weighting scheme than quieter ones to identify the flaws more accurately. The functionality
of the masking and region locator techniques could be combined for a more cohesive flaw
detection scheme.

Thus far we have concentrated on flaw detection only. No attempt has been made
to determine the size and depth of the actual flaw. When the graphite composite model
has been refined further, we will be able to use it to better understand the relationship
between flaw size and depth and the shape of the EMF.

I
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Filur s'a A 3b illustrate the zeroiny-in mechanism. On the first pass

. fla. is found in a section of tube inch long by locating bumps
in the magnetic field (figure 3a). On the second pass, the field is
measured around the flaw in much finer resolution (figure 1b).I'
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Dec 3 14:37 1987 S2.list Page 1

m using flaw S2

enter command> r
reading data from file /c/navdat2/cache/hr fS2.5OOkHz:

zatart - 0, phistart - 0, skip - 8...
they say data was read in okay.

enter, command> t
set to read at zatart - 88, phistart - 160, zlength - 80, philength - 40.

enter coumund> r
reading data from file /c/navdat2/cache/hr fS2.5OOkHz:

zstart - 88, phistart - 160, skip - 1...
they say data was read in okay.

enter command> a
reading data from file /c/navdat2/cache/hr fS2.4MHz, zstart 88, phistart - 160, skip - ..
they say data was read in okay.

m ~enter command> gcenter the corners as they were originally defined> -9 10 -15 16 . 'J" , s"
-

enter command> p
flaw identified.

enter command> s

enter command> sp
data type: m.
maximum value - 9.161450, Cz,phi] - [144,179]
4MHz max - 4.968279, flaw is on the inside.
corner(0] - 5.429874 6 [112,170]
corner(i] - 5.429874 6 (112,189]
corner[2] - 5.429874 @ [143,170]
corner[3] - 5.429874 @ [143,189]
flaw S2 is within region (111,1691, [111,190], (144,169], [144,190]
estimated flaw length - 0.14 inches; estimated flaw width - 0.15 inches.
actual flaw length - 0.13 inches; actual flaw width - 0.14 inches.
absolute length error - 0.01 inches; absolute width error - 0.01 inches.
relative length error - %6.25; relative width error - %10.00.
enter command>

l
I

,I
Figure Aal

Figures *a-Z%: program runs for flaws S2 (0.0096 inches deep, inside),

S6 (0.0288 inches deep, inside), S-4 (0.0288 in deep, outside), S-8
(0.0096 in. deep, outside). Note error measurements.I
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Dec 2 15:12 1987 S6.1ist Page 1

using flaw S6
enter command> r
reading data from file /c/navdat2/cache/hr fS6.500kHz:

zstart - 0, phistart - 0, skip - 8...
they say data was read in okay.

enter command> t
set to read at zatart - 88, phistart - 160, zlength - 80, philength - 40.

enter command> r
reading data from file /c/navdat2/cache/hr fS6.500kHz:

zstart - 88, phistart - 160, skip - I...
they may data was read in okay.

enter command> a
reading data from file /c/navdat2/cache/hr fS6.4MHz, zstart - 88, phistart - 160, skip - 1...
they say data was read in okay.

I enter command> gc

enter the corners as they were originally defined> -9 10 -15 16

enter commnad> p
flaw identified.

enter command> sp
data type: m.
maximum value - 9.866004, (z,phij - (144,179]
flaw is on the inside.
corner[0] - 5.828905 6 (112,170]
corner(l] - 5.828905 @ (112,189]
corner(2] - 5.828905 0 [143,170]
corner[3] - 5.828905 0 [143,1891
flaw S6 is within region [111,1691, (111,1901, [144,1693, [144,190]
estimated flaw length - 0.14 inches; estimated flaw width - 0.15 inches.I actual flaw length - 0.13 inches; actual flaw width - 0.14 inches.
absolute length error - 0.01 inches; absolute width error - 0.01 inches.
relative length error - %6.25; relative width error - %10.00.

enter command> q

I

I

I
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Dec 2 15:14 1987 S-4.list Page 1

I using flaw S-4

enter command>reading data from file /c/navdat2/cache/hr fS-4.500kHz:
zatart, - 0, phistart - 0, skip - 8...they say data was read in okay.

enter commurand> t
set to read at zstart - 80, phistart - 160, zlength - 96, philength - 40.

enter command> r
reading data from file ic/navdat2/cache/hr fS-4.51kkHz:zatart - 80, phistart - 160, skip - I.-.
they say data was read in okay.

reading data from file /c/navdat2/cache/hr fS-4.4MHz, zstart - 80, phistart - 160, skip - 1...
they say data was read in okay.
enter command> gc
enter the corners as they were originally defined> -9 10 -15 16

enter commnand> p
flaw identified.

enter command> sp
data type: m.
maximum value - 0.536622, [z,phi] - [144,179]
flaw is on the inside.
corner[Ol - 0.319718 @ (112,170]
corner[l] - 0.319718 @ [112,189]
corner[2] - 0.319718 Q (143,170]
corner[3] - 0.319718 9 [143,189]
flaw S-4 is within region [111,169], [111,190], [144,169], [144,190]
estimated flaw length - 0.14 inches; estimated flaw width - 0.15 inches.
actual flaw length - 0.13 inches; actual flaw width - 0.14 inches.
absolute length error - 0.01 inches; absolute width error - 0.01 inches.relative length error - %6.25; relative width error - %10.00.

enter command> q

I
I

I
I
I

I Fi.gure c

I
I
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using flaw S-a

enter commnand), r
reading data from file /c/navdat2/cache/hr fS-8.5OOkHz:

zstart - 0. phistart - 0, skip - 8...
they say data was read in okay.

enter conmnand> t
set to read at zstart - 72, phistart - 152, zlength - 112, philength - 56.

enter command> r
reading data from file /c/navdat2/cache/hr fS-8.500kHz:

zstart - 72, phistart - 152, skip - 1...
they say data was read in okay.

enter command> a
reading data from file /c/navdat2/cache/hr fS-8.4MHz, zstart - 72, phistart - 152, skip - 1...
they say data was read in okay.

enter command> gc
enter the corners as they were originally defined> -9 10 -15 16

enter command> p
flaw identified.

enter command> a

enter command> ap
data type: m.
maximum value - 0.071131, [z,phi] - (110,179]

4MHz max - 0.000002, flaw is on the outside.
corner[) - 0.044968 @ [112,170]
corner[l] - 0.044968 @ [112,189]
corner[2] - 0.044968 @ [143,170]
corner[3] - 0.044968 0 [143,189]
flaw S-8 is within region (110,168], [110,191), (145,168], [145,191)
estimated flaw length - 0.14 inches; estimated flaw width - 0.16 inches.
actual flaw length - 0.13 inches; actual flaw width - 0.14 inches.
absolute length error - 0.02 inches; absolute width error - 0.03 inches.
relative length error - %12.50; relative width error - %20.00.

enter command> q

FI
I
I
I
I

m Figure Id

I
I
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Using flaw h

enter command> r
reading data from file /c/navdat2/cache/hr fh.500kHz:zstart - 0. phistart - 0, skip - 8...they say data was read in okay.

enter command> t
set to read at zstart - 80, phistart - 160, zlength - 96, philength - 32.

enter command> r
reading data from file /c/navdat2/cache/hr fh.500kHz:

zstart - 80, phistart - 160, skip - 1.7-
they say data was read in okay.
enter command> a
reading data from file /c/navdat2/cache/hr fh.4MHz, zstart - 80, phistart - 160, skip - 1...
they say data was read in okay.
enter comnand> gc
enter the corners as they were originally defined> -1 1 -24 25
enter conunandL> p
flaw identified.

enter command> 3
enter command> sp

data type: m.
maximum value - 2.629167, [z,phil - [153,179]
4MHz max - 1.551727, flaw is on the inside.
corner[0] -2.553593 @ [103,178]
corner~l] - 2.553593 1 (103,180]
corner(2) 2.553593 @ (152,178]
corner[3] -2.553593 @ [152,180]
flaw h is within region (102,174], (102,184], (153,174], (153,184]
estimated flaw length - 0.21 inches; estimated flaw width - 0.07 inches.
actual flaw length - 0.20 inches; actual flaw width - 0.02 inches.
absolute length error - 0.01 inches; absolute width error - 0.05 inches.
relative length error - %4.00; relative width error - %266.67.

enter command> q

I
I

I
I

Figure 4a

I

Figures 4 a-c: programs for Purdue flaw h, c, and e as simulated by the
Sabbagh model. These are all long, narrow flaws; note accuracy of

n length estimate and overestimation of width.

I

I
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using flaw c
ercommand>r

reading data from file /c/navdat2/cache/hrfc.500kHz:
zstart - 0, phistart - 0, skip - 8...they say data was read in okay.

I ~ ~~enter €mad

set to read at zstart - 72, phistart - 160, zlength - 104, philength - 32.

enter commnand> *r
reading data from file /c/navdat2/cache/hr fc.500kHz:

zatart - 72, phistart - 160, skip - 1.7.
they say data was read in okay.

enter commuand> a
reading data from file /c/navdat2/cache/hr fc.4MHz, zstart - 72, phistart - 160, skip - 1...
they say data was read in okay.
enter command> gc
enter the corners as they were originally defined> -1 1 -24 25

nter command> p

law identified.

enter command> s

enter command> sp
data type: m.
maximum value - 2.736144, [z,phi] - [153,1791
4MHz max - 1.551520, flaw is on the inside.
corner[0} - 2.602403 0 (103,178]
corner[l} - 2.602403 6 [103,180]
corner[2] - 2.658800 @ (152,178]
corner[31 - 2.658800 @ [152,180)
flaw c is within region [101,174], [101,184), [153,174], [153,184 .
estimated flaw length - 0.21 inches; estimated flaw width - 0.07 inches.
actual flaw length - 0.20 inches; actual flaw width - 0.02 inches.
absolute length error - 0.01 inches; absolute width error - 0.05 inches.
relative length error - %6.00; relative width error - %266.67.

enter command> q

I
I
I
I
I
3 Figure

I
I

I
I . . . I I lI
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using flaw a
enter command> r

reading data from file /c/navdat2/cache/hr fe.500kHz:
zstart - 0, phistart - 0, skip - 8...

they say data was read in okay.

enter commU1and> t
set to read at zatart - 80, phistart - 160, zlength - 96, philength - 40.

enter command> r
reading data from file /c/navdat2/cache/hrfe.500kHz:

zstart - 80, phistart - 160, skip - 1...
they say data was read in okay.

enter command> a
reading data from file /c/navdat2/cache/hr fe.4MHz, zstart - 80, phistart - 160, skip - I...
they say data was read in okay.

i enter command> gc
enter the corners as they were originally defined> -1 1 -24 25

enter command> p
flaw identified.

enter command> a

enter command> 3p
data type: m.
maximum value - 2.422932, [z,phi] - (148,1791
4MHz max - 1.560291, flaw is on the inside.
corner[O] - 2.157280 8 [103,178]
corner[1] - 2.157280 @ [103,1801
corner[2] - 2.025612 Q [152,178]
corner[3] - 2.025612 9 [152,180]
flaw e is within region [106,174], [106,184], (148,174], [148,184]
estimated flaw length - 0.17 inches; estimated flaw width - 0.07 inches.
actual flaw length - 0.20 inches; actual flaw width - 0.02 inches.
absolute length error - -0.03 inches; absolute width error - 0.05 inches.
relative length error - %-14.00; relative width error - %266.67.m enter commnand> q

l
I
I

I Figure Gc

I
I
£ Flaw e is deeper in the middle then on the ends. This causes a length overestimation.

I
I
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using flaw (null)

enter comm~and> n
enter flaw name> /c/navdat2/cache/hhrad2.500kHz

enter command> r
reading data from file /c/navdat2/cache/hhrad2.500kHz:

zstart - 0, phistart - 0, skip - 4...
they say data was read in okay.
enter command> tset to read at zstart - 28, phistart - 8, zlength - 36, philength - 8.

3 enter command> r
reading data from file /c/navdat2/cache/h hrad2.500kHz:

zatart - 28, phistart - 8, skip - 1.-
they say data was read in okay.

enter command> gf
enter flaw width and length> 0.022000 0.200000
enter command> p
flaw identified.

enter command> sp
data type: M.
maximum value - 438.889929, [z,phi] - [38,12)
flaw hrad2 is within region [38,11], [38,13], [55,11], [55,13]
estimated flaw length - 0.18 inches; estimated flaw width - 0.16 inches.
actual flaw length - 0.20 inches; actual flaw width - 0.05 inches.
absolute length error - -0.02 inches; absolute width error - 0.11 inches.
relative length error - %-10.00; relative width error - %200.00.
enter command> 3

5 enter comy and> q

I,
F

i Figure Ia

I
3 Figures la-c: Program runs for Purdue data, flaws h, c, and e.

I
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using flaw (null)

nter command> n
nter flaw name> /c/navdat2/cache/h_crad.5OOkHz

enter conmand> r
reading data from file /c/navdat2/cache/h crad.50OkHz:

zstart - 0, phistart - 0, skip - 4...
they say data was read in okay.

enter command> t
set to read at zstart - 32, phistart - 8, zlength - 36, philength - 8.

enter command> rreading data from file /c/navdat2/cache/h crad.5O0kHz:zstart - 32, phistart - 8, skip - 1...

they say data was read in okay.

enter command> gf
enter flaw width and length> 0.022000 0.200000enter comm and> p
flaw identified.

enter command> sp
data type: M.
maximum value - 0.000142, [z,phi] - [40,12]
flaw crad is within region [40,11], [40,13], [59,11], [59,13]
estimated flaw length - 0.20 inches; estimated flaw width - 0.16 inches.
actual flaw length - 0.20 inches; actual flaw width - 0.05 inches.
absolute length error - 0.00 inches; absolute width error - 0.11 inches.
relative length error - %0.00; relative width error - %200.00.

nter command> 
3

enter conmmand> q

I,
I,U
I

I
I
l
I
I Figure ~

I
I



3 Doc 4 09:04 1987 erad.list Page 1

using flaw (null)
enter comnand> n
enter flaw name> /c/navdat2/cache/h_*rad.5OOkHz

enter command> r
reading data from file /c/navdat2/cache/h erad.5OOkHz:

zstart - 0, phistart - 0, skip - 4...
they say data was read in okay.
enter command> tset to read at zstart - 24, phistart - 8, zlength - 36, philength - 8.

enter command> r
reading data from file /c/navdat2/cache/h erad.500kHz:

zstart - 24, phistart - 8, skip - 1...-
they say data was read in okay.

: nter command> gf
enter flaw width and length> 0.022000 0.200000enter command> p

flaw identified.

enter comand> sp
data type: m.
mximum value - 0.000094, [z,phi] - (48,12]
flaw erad is within region [36,21], [36,13], [48,11], [48,13)
estimated flaw length - 0.13 inches; estimated flaw width - 0.16 inches.
actual flaw length - 0.20 inches; actual flaw width - 0.05 inches.
absolute length error - -0.07 inches; absolute width error - 0.11 inches.
relativ length error - %-35.00; relative width error - %200.00.
enter command> 3
enter command> q

I,I
I
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using flaw x

enter command>eading data from file /c/navdat2/cache/hr fx.5OOkHz:
zatart - 0, phistart - 0, skip - S...-

they say data was read in okay.

enter commnand> t
set to read at zstart - 80, phistart - 0, zlength - 96, philength - 360.

enter command> r
reading data from file /c/navdat2/cache/hrfx.500kHz:

zatart - 80, phistart - 0, skip - 1...
they say data was read in okay.

enter command> a

reading data from file /c/navdat2/cache/hr fx.4MHz, zstart - 80, phistart - 0, skip - 1...
they say data was read in okay.

enter command> gc
enter the corners as the were originally defined> -179 180 -5 6
PHISIZE - 360, ZSIZE 56 o

r lengths of sides as zlen philen> -(ZSIZE/2)+l - -127, (ZSIZE/2) - 128

nter command> p
flaw identified.

enter command> s

enter command> sp '.P. "- t I'r- F'':1  "data type: m.
maximum value - 0.046969, [z,phi) - [141,0)
4MHz Y m- 0.046969, flaw is on the outside.
flaw is between 122 and 133 along z axis.
flaw is of uniform thinnin type, found between 114 and 141.
estimated flaw length - 0.11 inches.
actual flaw length - 0.05 inches.
absolute length error - 0.06 inches.
relative length error - %133.33.3 enter comnand> q

*q
l

I

3 Figure Ia

Figures *a-c: Program runs for three uniform thinnin9 flaws. Flaw x
(0.0576 in. deep around the outside), flaw xl (0.096 in. deep around
the outside), flaw x2 (0.096 in. deep around the inside).I
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using flaw xl
m en ter cormmand> r

reading data from file /c/navdat2/cache/hr fxl.SOOkHz:
zsUart - 0, phistart. - 0, skip - S...they say data was read in okay.

enter command> t
set to read at zstart - 64, phistart - 0, zlength - 128, philength - 360.

enter command> r
reading data from file /c/navdat2/cache/hr fxl.OOkHz:

ztart - 64, phistart - 0, skip - ...
they say data was read in okay.

enter command> a
reading data from file /c/navdat2/cache/hr fxl.4MHz, zstart - 64, phistart - 0, skip -
they say data was read in okay.
enter command> gc

enter the corners s they were originally defined> -179 180 -19 20
lengths of sides a3 zln philn> -(ZSIZE/2}+l - -127, (ZSIZE/2) -128

enter command> p

flaw identified.

m enter command> s

enter command> sp
data type: m.
maximum value - 0.093718, (z,phi] - (107,0]
4MHz max - 0.093718, flaw is on the outside.
flaw is between 108 and 147 along z axis.
flaw is of uniform thinning type, found between 107 and 148.
estimated flaw length - 0.17 inches.
actual flaw length - 0.16 inches.
absolute length error - 0.01 inches.
relative length error - 05.00.

enter command> q

-rI
I
I
l
l
I
l
I, Figure Sb

.I, ,I



Dec 2 17:59 1987 x2.1ist Page 1

I using flaw x2

enter commuand> r
r eading data from file /c/navdat2/cache/hr fx2.S0OkHz:

zstart - 0, phistart - 0, skip - 8...
they say data was read in okay.

enter coimmand> t
set to read at zatart - 72, phistart - 0, zlength - 104, philength - 360.

enter connand> r
reading data from file /c/navdat2/cache/hr fx2.SOOkHz:

zstart - 72, phistart - 0, skip - 1...
they say data was read in okay.
enter command> areading data from file /c/navdat2/cache/hr-fx2.4MHz, zstart - 72, phistart - 0, skip - 1...
they say data was read in okay.

enter command> gc
enter the corners as they were originally defined> -179 180 -19 20
PHISIZE - 360, ZSIZE - 256
r lengths of sides as zlen philen> -(ZSIZE/2)+1 - -127, (ZSIZE/2) - 128

nter command> p
flaw identified.

enter connand> s

enter command> sp
data type: m.
maximum value - 10.547817, Jz,phi] - (107,0]
4MHz max - 10.547817, flaw is on the inside.
flaw is between 108 and 147 along z axis.
flaw is of uniform thinning type, found between 107 and 148.
estimated flaw length - 0.17 inches.
actual flaw length - 0.16 inches.
absolute length error - 0.01 inches.
relative length error - %5.00.

enter command> q

F
I
l

3 Figure Rc
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<enter flaw width> 30
enter flaw length> 32
enter value at 40kHz> 13.3
enter value at 4MHz> 5.10flaw is 6.583090 deep on the inside.

(flaw is 6.0 deep on inside.)

enter flaw width> 20

enter flaw length> 32
enter value at 40kHz> 10.3
enter value at 4MHz> 4.85
flaw is 5.101852 deep on the inside.

(flaw is 5.0 deep on the inside.)

enter flaw width> 20
enter flaw length> 26
enter value at 40kHz> 10.1
enter value at 4MHz> 4.74
flaw is 6.530351 deep on the inside.

(flaw is 6.0 deep on the inside.)

enter flaw width> 22
enter flaw length> 32
enter value at 40kHz> 5.66
enter value at 4MHz> 0.00338
flaw is 4.071072 deep on the outside.

(flaw is 6.0 deep on the outside.)

enter flaw width> 20
enter flaw length> 32
enter value at 40kHz> 4.06
enter value at 4MHz> 0.000539
flaw is 2.918455 deep on the outside.

(flaw is 5.0 deep on the outside.)

enter flaw width> 20
enter flaw length> 32
enter value at 40kHz> 4.06

tez value at 4MHz> 0.0000539
flaw is 2.918455 deep on the outside.

(flaw is 5.0 deep on the outside.)

enter flaw width> 20
enter flaw length> 48
enter value at 40kHz> 6.53
enter value at 4MHz> 0.0034
flaw is 4.165312 deep on the outside.

(flaw is 6.0 deep on the outside.)

enter flaw width> 30
enter flaw length> 48
enter value at 40kHz> 0.00352
enter value at 4MHz> 4
flaw is 0.000903 deep on the inside.3 (flaw is 6.00 deep on the outside.)

enter flaw width> 30
enter flaw length> 32
enter value at 40kHz> 6.71
enter value at 4M1z> 0.000352
flaw is 4.155879 deep on the outside.

(flaw is 6.0 deep on the outside.)

Figure*l: Results of program runs for various flaws showing estimated
depths; correct depths are included.

I
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enter flaw width> 30
enter flaw length> 48
enter value at 40kHz> 8.35
enter value at 4MHz> 0.00363
flaw is 4.346963 deep on the outside.

(flaw is 6.0 deep on the outside.)

enter flaw width> 20
enter flaw length> 48
enter value at 40kHz> 5.03
enter value at 4MHz> 0.000553
flaw is 3.106542 deep on the outside.

(flaw is 5.0 deep on the outside.)

enter flaw width> 22
enter flaw length> 32
enter value at 40kHz> 11.8
enter value at 4MHz> 4.93
flaw is 6.304555 deep on the inside.

(flaw is 6.0 deep on inside.)

enter flaw width> 20
enter flaw length> 32
enter value at 40kHz> 10.3
enter value at 4MHz> 4.85
flaw is 5.101852 deep on the inside.

I (flaw is 5.0 deep on the inside.)

enter flaw width> 20
enter flaw length> 48
enter value at 40kHz> 13.0
enter value at 4MHz> 4.97
flaw is 6.630630 deep on the inside.

3 (flaw is 6.0 deep in the inside.)

enter flaw width> 30
enter flaw length> 32
enter value at 40kHz> 13.3
enter value at 4MHz> 5.10
flaw is 6.583090 deep on the inside.5 (flaw is 6.0 deep on the inside.)

enter flaw width> 30
enter flaw length> 48
enter value at 40kHz> 15.6
enter value at 4MHz> 5.25
flaw is 7.195123 deep on the inside.
(flaw i 6.0 deep on the inside.)

I enter flaw width> 20
enter flaw length> 48
enter value at 40kHz> 11.8
enter value at 4MHz> 4.97
flaw is 5.453442 deep on the inside.

(flaw is 5.0 deep on the inside.)

Figurelb (cont.)
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